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Abstract

The main object of this thesis is the spectral theorem for self-adjoint opera-
tors on Hilbert space. We begin with a thorough survey of preliminary Hilbert
space theory including the Riesz representation theorem, sequential weak com-
pactness of the closed unit ball, and many other key results, before moving
on to the study of bounded linear operators between Hilbert spaces. We then
look at compact, self-adjoint operators and establish a version of the spectral
theorem for them, before proving the spectral theorem in more generality for
self-adjoint operators.
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1 Introduction

The theory of Hilbert spaces generalises the theory of Euclidean finite-dimensional
spaces to infinite dimensions. The notion of distance in a Hilbert space is connected
to the concept of an inner product and consequently, many geometric notions arise,
allowing for a far more rigid structure than is available in a more general Banach
space. Although the axioms of a Hilbert space are simple, the theory is a far-reaching
subject in modern mathematics, with a large number of applications; Quantum Me-
chanics, where the self-adjoint operators serve as the observables, in particular has
made notable use. In this thesis, we begin with the fundamental theory of Hilbert
spaces, before developing an understanding of operators on Hilbert spaces, which will
allow us to state and prove the spectral theorem, which is the culmination of this
project.

In chapter 1, we begin by first formulating the concept of an inner product space,
and then introduce a Hilbert space as an inner product space in which the induced
metric is complete. Some familiar examples are shown such as Cn with the familiar
“dot product”, as well as the collection of absolutely square summable sequences ℓ2.
We also provide some non-examples, before developing the important concept of a
Hilbert space basis, alternatively referred to as an orthonormal basis. This notion of
basis allows us to compute elements of the Hilbert space as infinite sums of the basis
elements, which turns out to be very important in later chapters.
In the final sections of the chapter, we define various types of isomorphisms between
Hilbert spaces and show that every separable Hilbert space is isometrically isomorphic
to ℓ2. In the last section, we first prove the important Riesz representation theorem,
from which the Hahn–Banach theorem for Hilbert spaces follows as a result. We
also define weak convergence and show that the closed unit ball of a Hilbert space is
sequentially weakly compact.

In the second chapter, we begin the theory of operators, which are bounded lin-
ear maps from one Hilbert space to another, although we mainly focus on operators
going to and from the same Hilbert space. The Riesz representation theorem from
chapter 1 provides for each operator the existence of the adjoint, a very important
notion used extensively afterwards. The most important class of operators we study
are the self-adjoint ones - those that are equal to their own adjoint. We also look
at other interesting types of operators, including finite rank, compact, unitary, and
normal operators, and study some properties. Compact operators in particular are
of interest, and we characterise some equivalent notions of compact operators before
ending the chapter by showing that the adjoint of a compact operator is also compact.
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In the final chapter on spectral theory, we begin by reviewing the concepts of
eigenvalues and eigenvectors and show a new theory is needed for infinite dimensions
as not all operators have eigenvalues, in particular, the right shift is shown as an
example. We therefore define the spectrum of an operator A as the set of all λ ∈ C
such that A − λI is not bijective. We explore some spectrum properties and show
that it is a compact subset of C contained in the circle of radius ∥A∥ centred about
the origin.
In the second section, we use much of the theory developed in earlier chapters to state
and prove the spectral theorem for compact self-adjoint operators, which provides an
analogue of the familiar spectral theorem from finite-dimensional linear algebra.
In the last section, we state and prove the spectral theorem in more generality, re-
quiring our operator only the be self-adjoint and dropping compactness. To do this,
we introduce the notion of a projection-valued measure, utilising measure and inte-
gration theory. We also prove the existence of a functional calculus for each operator
and explore the associated properties. Many key concepts from measure theory are
used throughout, such as monotone classes and Lebesgue’s dominated convergence
theorem.

The purpose of the appendix is to present key results throughout mathematics of
which we will make frequent use, but whose proofs would lead us too far away from
the main objective of this thesis.
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2 Geometry of Hilbert Space

In this chapter, we discuss the elementary theory of Hilbert Spaces and examine the
geometry behind them. Throughout, we will mostly deal with complex vector spaces
unless stated otherwise. The first chapter of [6] and chapter three of [8] are used as
guiding sources.

2.1 Inner Product Spaces

Definition 2.1 (Inner Product). Let E be a complex vector space. An inner product
on E is a function (· | ·) : E × E → C that satisfies the following conditions;

(i) Conjugate Symmetry
(x | y) = (y | x) for all x, y ∈ E.

(ii) Linearity in the first component
(αx1 + βx2 | y) = α(x1 | y) + β(x2 | y) for all x1, x2, y ∈ E and α, β ∈ C.

(iii) Positive Definiteness
(x | x) ≥ 0 for all x ∈ E and (x | x) = 0 if and only if x = 0.

Remark 2.2. Condition (i) is also known as Hermitian Symmetry.

Remark 2.3. Conditions (i) and (ii) show that (· | ·) is antilinear with respect to
the second argument,

(x | αy1 + βy2) = (αy1 + βy2 | x)
= (αy1 | x) + (βy2 | x)
= α (y1 | x) + β (y2 | x)
= α(x | y1) + β(x | y2).

This shows that an inner product is in fact an example of a sesquilinear form on E.
The pair (E, (· | ·)) will together be known as an inner product space.

Example 2.4. The prototypical example of an inner product space is given by the
complex vector space

Cn = {(x1, x2, . . . , xn) | xi ∈ C, i = 1, 2, . . . , n}

together with the inner product (· | ·) : Cn × Cn → C given by
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(x | y) :=
n∑

i=1

xiyi, for x, y ∈ Cn

To see that this is an inner product space, let α, β ∈ C, x, y, z ∈ Cn and let x =
(xi)

n
i=1, y = (yi)

n
i=1, z = (zi)

n
i=1. We then have the following.

(i)

(x | y) =
n∑

i=1

xiyi =
n∑

i=1

yixi = (y | x)

(ii)

(αx+ βy | z) =
n∑

i=1

(αxi + βyi)zi = α

n∑
i=1

xizi + β

n∑
i=1

yiyi = α(x | z) + β(y | z)

(iii)
n∑

i=1

xixi ≥ 0 since xixi ≥ 0 for all complex numbers.

If
n∑

i=1

xixi = 0 then xi = 0 for all i ∈ {1, 2, . . . , n} and so x = 0.

Thus the three conditions of an inner product are satisfied and (Cn, (· | ·)) is indeed
an inner product space.

Example 2.5. The set of absolutely square summable sequences

ℓ2 = {(xn)n∈N ∈ CN |
∞∑
i=1

|xi|2 <∞}

is a subset of CN, the vector space of all sequences of complex numbers. To see
that ℓ2 is also a vector space, it suffices to show that (0)n∈N ∈ ℓ2, and that for any
(xn)n∈N, (yn)n∈N ∈ ℓ2 and λ ∈ C, we have both (λxn)n∈N and (xn+yn)n∈N as elements
of ℓ2.
Clearly the first condition is true. For the second, a straightforward computation
shows that

∑∞
i=1 |λxi|2 = |λ|2

∑∞
i=1 |xi|2 <∞, and hence (λxn)n∈N ∈ ℓ2.

For the third and final condition, recall Minkowski’s Inequality [8] page 6, which says
that for p ≥ 1 and any two sequences of complex numbers (xn)n∈N and (yn)n∈N, we
have the following,
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(
∞∑
n=1

|xn + yn|p
) 1

p

≤

(
∞∑
n=1

|xn|p
) 1

p

+

(
∞∑
n=1

yn|p
) 1

p

(2.1)

Thus using p = 2 in the above inequality gives (xn + yn)n∈N ∈ ℓ2.

For (xn)n∈N, (yn)n∈N ∈ ℓ2 we define the inner product as

((xn)n∈N | (yn)n∈N) :=
∞∑
n=1

xnyn (2.2)

The proof that this is in an inner product is very similar to the Cn case from example
2.4.

Having seen some examples of an inner product space, we will now work towards
understanding the special geometric properties all inner product spaces possess.

Lemma 2.6. Let (E, (· | ·)) be a complex inner product space. Then for all x, y ∈ E
we have the following inequality.

|(x | y)|2 ≤ (x | x)(y | y) (2.3)

Moreover, equality holds if and only if x and y are linearly dependent.

Proof: If (y | y) = 0 then y = 0 and the inequality is obviously true. So suppose
(y | y) ̸= 0 and let α ∈ C be arbitrary. We then have

0 ≤ (x− αy | x− αy) = (x | x)− α(y | x)− α(x | y) + αα(y | y).

Let α = (x|y)
(y|y) and we have the following,

0 ≤ (x | x)− (x | y)
(y | y)

(y | x)− (x | y)
(y | y)

(x | y) + (x | y)
(y | y)

(x | y)
(y | y)

(y | y)

This in turn gives 0 ≤ (x | x)− (x|y)(x|y)
(y|y) , whence the desired inequality follows.

Suppose now (2.3) holds as an equality, that is, |(x | y)|2 = (x | x)(y | y). Note
that |(x | y)|2 = (x | y)(x | y) = (x | y)(y | x), allowing us to rewrite the equality as

(x | y)(y | x) = (x | x)(y | y) (2.4)
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Then consider the following inner product,

(
(y | y)x− (x | y)y

∣∣∣ (y | y)x− (x | y)y
)
= (y | y)2(x | x)− (y | x)(x | y)(y | y)

= (y | y)
(
(y | y)(x | x)− (x | y)(y | x)

)
= 0 by (2.4)

Thus (y | y)x− (x | y)y = 0 and so x and y are linearly dependent.

For the reverse, suppose x and y are linearly dependent. Then y = αx for some
α ∈ C. A straightforward computation then yields the equality,

|(x | y)|2 = |α|2|(x | x)|2 = αα(x | x)2 = (x | x)(αx | αx) = (x | x)(y | y).

■

Theorem 2.7. Let E be a complex inner product space with inner product (· | ·).
Then for all x ∈ E, the inner product induces a norm in the following way,

∥x∥ :=
√

(x | x).

Proof: Recall the three axioms of a norm are (i) Homogenity, (ii) Positive-Definiteness,
and (iii) the Triangle Inequality.

For (i) let α ∈ C, and then compute the following.

∥αx∥ =
√

(αx | αx) =
√
αα(x | x) =

√
|α|2(x | x) = α∥x∥.

For (ii) we use the fact that (x | x) ≥ 0 is always true to get that ∥x∥ =
√
(x | x) ≥

0. The case ∥x∥ =
√

(x | x) = 0 is true if and only if (x | x) = 0 as desired.

For the triangle inequality, let x, y ∈ E. Then using 2.6 we have the following.

∥x+ y∥2 = (x+ y | x+ y) = ∥x∥2 + ∥y∥2 + (x | y) + (x | y)
= ∥x∥2 + ∥y∥2 + 2Re[(x | y)] ≤ ∥x∥2 + ∥y∥2 + 2|(x | y)|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2 .

■
Having shown that the norm constructed in 2.7 actually constitutes a norm,

Lemma 2.6 can be reformulated as follows.
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Theorem 2.8 (Cauchy–Schwarz Inequality). Let E be a complex vector space with
inner product (· | ·) and induced norm ∥ · ∥. Then we have the following inequality.

|(x | y)| ≤ ∥x∥ ∥y∥ for all x, y ∈ E.

Proof: Combine 2.7 with 2.6. ■
From now on, we will always equip an inner product space with the norm intro-

duced above.

Theorem 2.9 (Parallelogram Law). For any two elements x and y in an inner
product space we have

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
Proof: Consider the squared norms of x+ y and x− y,

∥x+ y∥2 = (x+ y | x+ y) = ∥x∥2 + ∥y∥2 + (x | y) + (y | x), (2.5)

∥x− y∥2 = (x− y | x− y) = ∥x∥2 + ∥y∥2 − (x | y)− (y | x).

Adding these two equations together gives the result immediately.
■

Remark 2.10. For any complex number z ∈ C, we have that z + z = 2Re(z). Thus
equation (2.5) in the preceding proof may be written as

∥x+ y∥2 = ∥x∥2 + 2Re(x | y) + ∥y∥2. (2.6)

This is known as the polar identity.

Definition 2.11. Two vectors x and y in an inner product space are orthogonal ,
denoted by x ⊥ y, if (x | y) = 0.

If x ⊥ y then (y | x) = (x | y) = 0 and so y ⊥ x. Thus, orthogonality is a
symmetric relation.

Theorem 2.12 (Pythagoras). For any two orthogonal vectors in an inner product
space we have the following relation.

∥x+ y∥2 = ∥x∥2 + ∥y∥2 (2.7)

Proof: If x ⊥ y then (x | y) = (y | x) = 0, and the theorem follows immediately
from 2.5. ■
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Remark 2.13. Using the parallelogram law it is easy to find examples of norms on
a complex vector space which are not induced by an inner product. For example, let
ℓ1 be the set of all absolutely-summable complex sequences, that is,

ℓ1 = {(xn)n∈N ∈ CN |
∞∑
n=1

|xn| <∞} (2.8)

Then it is easy to show that ℓ1 is a normed vector space with norm given by

∥(x)n∈N∥ =
∞∑
n=1

|xn|. (2.9)

Consider the the vectors e1 = (1, 0, 0, . . . ) and e2 = (0, 1, 0, . . . ). Then ∥e1 + e2∥2 =
22 = 4 and ∥e1−e2∥ = 22 = 4. Meanwhile ∥e1∥2 = 1 = ∥e2∥2. Since 8 ̸= 4 the parallel-
ogram law is not satisfied and thus this norm on ℓ1 is not induced by an inner product.

It can be shown that any norm which satisfies the parallelogram law has to come from
an inner product; this is the Jordan–von Neumann theorem, see section 8 in [11].

2.2 Complete Inner Product Spaces

In this section, we define what is meant by a Hilbert space and look at some examples
and some non-examples. Chapter 1 of [6] and section 3.4 in [8] are both followed
closely.

Definition 2.14. A complete inner product space is known as a Hilbert Space, and
will often be denoted by an upper case H.

Example 2.4 is a Hilbert Space. This follows from the completeness of C, which is a
consequence of the Bolzano–Weierstrass theorem, see page 51 [17].
In Example 2.5 we showed that the set of square summable sequences ℓ2 is an inner
product space, in fact, it is also a Hilbert space, see [14] theorem 9.8.
We will now discuss some inner product spaces which are not Hilbert spaces.

Example 2.15. Consider the set of continuous functions on the unit interval,

C ([0, 1]) := {f ∈ C[0,1] | f is continuous}

with inner product given by (f | g) :=
∫ 1

0
f(x)g(x)dx, for f, g ∈ C ([0, 1]), see section

3, [8]. To see that the space is not complete, consider the following sequence (fn)n∈N ∈
C ([0, 1])N,
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fn(x) =


1 if 0 ≤ x ≤ 1

2

1− 2n
(
x− 1

2

)
if 1

2
≤ x ≤ 1

2n
+ 1

2

0 if 1
2n

+ 1
2
< x ≤ 1

Each fn is continuous. To see this, let x0 ∈ [0, 1] and suppose ε > 0. If x0 is either of
the endpoints, i.e. 0 or 1, it is clear that fn is continuous at x0 as sufficiently small
x values to the right and the left from 0 and 1 respectively make |f(0)− f(x)| = 0 =
|f(1)− f(x)|.
If x0 ∈ (0, 1

2
), let δ1 = min{d(x0,

1
2
), x0}, so that if |x−x0| < δ1, then |f(x)−f(x0)| < ε.

If x0 ∈ [1
2
, 1
2n

+ 1
2
), then let δ2 = ε

2n
. We then have that if |x − x0| < δ2, then

|f(x)−f(x0)| < ε. Lastly, if x0 ∈ [ 1
2n

+ 1
2
, 1], let δ3 = min{d(x0,

1
2n

+ 1
2
), 1−x0}, which

as in the previous cases gives |f(x) − f(x0)| < ε whenever |x − x0| < δ3. Thus each
fn is continuous.
Moreover, (fn)n∈N is a Cauchy sequence since

∥fn − fm∥ =

√∫ 1

0

|fn(x)− fm(x)|2dx ≤
(
1

n
+

1

m

) 1
2

−→ 0.

However, the sequence does not converge with respect to this inner product as in
the limit it tends to the following discontinuous function, which is not an element of
C ([0, 1]),

f(x) =

{
1 if 0 ≤ x ≤ 1

2

0 if 1
2
< x ≤ 1

Consequently, C ([0, 1]) with the inner product defined as above is not a Hilbert Space.
If we restrict ourselves only to the level of normed spaces and put the supremum norm
on C ([0, 1]), the space turns out to be complete, that is, a Banach space. This is
a standard proof, see [8] section 1.5. This norm is not induced by an inner product
however. Consider the functions f(x) = 1− x and g(x) = x. Then

2 = ∥f + g∥2 + ∥f − g∥2 ̸= 2
(
∥f∥2 + ∥g∥2

)
= 4

Since it doesn’t satisfy the parallelogram law, the uniform norm is not induced by an
inner product.

Example 2.16. Another non-example is exhibited by the following space, with the
same inner product as defined in 2.5.

φ0 = {(xn)n∈N ∈ CN | ∃n0 ∈ N such that xn = 0 for all n ≥ n0} (2.10)

which is a subspace of the set of all sequences that converge to zero, that is,

φ = {(xn)n∈N ∈ CN | lim
n→∞

xn = 0}. (2.11)

9
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Consider the the sequence (ρn)n∈N ∈ φ0
N given by

ρn =

(
1,

1

2
,
1

3
, . . . ,

1

n
, . . .

)
Then limn,m→∞ ∥ρn − ρm∥ = limn,m→∞

(∑n
k=m+1

1
k2

) 1
2 = 0, for m < n, and so the

sequence (ρn)n∈N Cauchy. However, the sequence does not converge as it tends to the
sequence

(
1
n

)
n∈N which is an element of φ, but not φ0. Hence φ0 is not closed in φ

and therefore is not a Hilbert space.

Remark 2.17. In all of the above we have been considering complex inner product
spaces. It is also natural to consider real inner product spaces, in which case we
have a real vector space E and the inner product is now a map (· | ·) : E × E → R
that satisfies the same axioms listed in 2.1. In the real case however, the notions of
antilinearity and linearity are the same, and thus an inner product on a real vector
space is a symmetric bilinear form.
From now on we will mostly only consider complex inner product spaces, due to the
fact that every real Hilbert space can be complexified to a complex one, see section
1 [6].

2.3 Orthogonal and Orthonormal Systems

In this section, we discuss the fundamental geometric structure that makes Hilbert
spaces more special than ordinary Banach spaces. In particular, the notion of or-
thonormal basis which we will study is of high importance.

Definition 2.18. Let E be an inner product space. A set F of non-zero vectors in E
is called an orthogonal system if x ⊥ y for any two distinct elements of F . Moreover,
if ∥x∥ = 1 for all x ∈ F , we call the system orthonormal.

Note that if x is orthogonal to each of x1, x2, . . . , xn then it is also orthogonal to
any linear combination of the xi. To see this take an arbitrary linear combination
y :=

∑n
i=1 αixi and consider the following.

(x | y) =

(
x |

n∑
i=1

αixi

)
=

n∑
i=1

αi(x | xi) = 0 (2.12)

Theorem 2.19 (Generalised Pythagorean Theorem). Let E be an inner prod-
uct space and suppose n is any natural number greater than or equal to 2. If
{x1, x2, . . . xn} is an orthogonal system, then∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥
2

=
n∑

k=1

∥xk∥2

10
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Proof: If x1 ⊥ x2 then ∥x1 + x2∥2 = ∥x1∥2 + ∥x2∥2 by 2.7, and so the claim is true
for n = 2. Suppose now that the claim holds for n− 1, that is,∥∥∥∥∥

n−1∑
k=1

xk

∥∥∥∥∥
2

=
n−1∑
k=1

∥xk∥2

Let x =
∑n−1

k=1 xk and let y = xn. By 2.12, x ⊥ y, and we have∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

=∥x+ y∥2 = ∥x∥2 + ∥y∥2 =
n−1∑
k=1

∥xk∥2 + ∥xn∥2 =
n∑

k=1

∥xk∥2

The result follows by induction.
■

Theorem 2.20 (Bessel’s Equality and Inequality). Let {x1, x2, . . . , xn} be an or-
thonormal set of vectors in an inner product space (E, (· | ·)). Then for every x ∈ E
we have the following,∥∥∥∥∥x−

n∑
k=1

(x | xk)xk

∥∥∥∥∥
2

= ∥x∥2 −
n∑

k=1

|(x | xk)|2, (2.13)

n∑
k=1

|(x | xk)|2 ≤ ∥x∥2. (2.14)

Proof: Let α1, α2, . . . , αn be arbitrary complex numbers. By 2.19, we have∥∥∥∥∥
n∑

k=1

αkxk

∥∥∥∥∥
2

=
n∑

k=1

∥αkxk∥2 =
n∑

k=1

|αk|2.

Then consider the following,∥∥∥∥∥x−
n∑

k=1

αkxk

∥∥∥∥∥
2

=

(
x−

n∑
k=1

αkxk | x−
n∑

k=1

αkxk

)

= ∥x∥2 −

(
x |

n∑
k=1

αkxk

)
−

(
n∑

k=1

αkxk | x

)
+

n∑
k=1

|αk|2∥xk∥2

= ∥x∥2 −
n∑

k=1

αk(x | xk)−
n∑

k=1

αk(x | xk) +
n∑

k=1

αkαk

= ∥x∥2 −
n∑

k=1

|(x | xk)|2 +
n∑

k=1

|(x | xk)− αk|2.

11
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In particular, for αk := (x | xk) we have∥∥∥∥∥x−
n∑

k=1

(x | xk)xk

∥∥∥∥∥
2

= ∥x∥2 −
n∑

k=1

|(x | xk)|2,

giving the first result. Then since the norm is alwasy non-negative we have that
0 ≤ ∥x∥2 −

∑n
k=1 |(x | xk)|2 which gives the second result. ■

Definition 2.21. Let S be a non-emtpy subset of a Hilbert space H. The set of all
elements of H orthogonal to S, denoted by S⊥, is called the orthogonal complement
of S, i.e,

S⊥ := {x ∈ H : x ⊥ s for all s ∈ S} (2.15)

Theorem 2.22. For any subset S of a Hilbert space H, the set S⊥ is a closed subspace
of H.

Proof: First note that for α, β ∈ C and x, y ∈ S⊥ we have (αx + βy | z) = α(x |
z) + β(y | z) = 0 for all z ∈ S. Thus, S⊥ is a subspace of H.
To see that it is closed, let (xn)n∈N be a sequence in S⊥, and let x ∈ H be such that
limn→∞ xn = x. From the continuity of the inner product A.30, for every y ∈ S⊥ we
have the following,

(x | y) =
(
lim
n→∞

xn | y
)
= lim

n→∞
(xn | y) = 0.

This shows that x ∈ S⊥ and hence S is closed.
■

Definition 2.23. Suppose V is a vector space, U is a subset of V , and the points
x, y are in U . The line segment between x and y, denoted by [x, y], is given by the
following set,

[x, y] := {(1− α)x+ αy | α ∈ [0, 1]}. (2.16)

We say that U is convex if the line segment between any two points in U is entirely
contained in U .

Theorem 2.24 (Closest Point Property). Let S be a closed convex subset of a Hilbert
space H. For every point x ∈ H, there exists a unique point y ∈ S such that ∥x−y∥ =
inf{∥x− z∥ : z ∈ S}.

Proof: Let (yn)n∈N be a sequence in S such that

lim
n→∞

∥x− yn∥ = inf{∥x− z∥ : z ∈ S}.

12
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For brevity let d = inf{∥x− z∥ : z ∈ S}. Since 1
2
(ym + yn) ∈ S, we have that

∥x− 1

2
(ym + yn)∥ ≥ d, for all m,n ∈ N.

By the parallelogram law 2.9, we obtain the following,

∥ym − yn∥2 = 4∥x− 1

2
(ym + yn)∥2 + ∥ym − yn∥2 − 4∥x− 1

2
(ym + yn)∥2

= 2
(
∥x− ym∥2 + ∥x− yn∥2

)
− 4∥x− 1

2
(ym + yn)∥2.

Since 2 (∥x− ym∥2 + ∥x− yn∥2) → 4d2 as m,n → ∞, and ∥x − 1
2
(ym + yn)∥2 ≥ d2,

we have ∥ym − yn∥2 → 0 as m,n→∞. Thus (yn)n∈N is a Cauchy sequence. Since H
is complete and S is closed, limn→∞ yn := y exists and is in S. Moreover, from the
continuity of the norm, we have

∥x− y∥ = ∥x− lim
n→∞

yn∥ = lim
n→∞

∥x− yn∥ = d

For uniqueness, suppose we have another point y′ ∈ S satisfying the claim. Then
since 1

2
(y′ + y) ∈ S, we have that,

∥y − y′∥2 = 4d2 − 4∥x+
y − y′

2
∥2 ≤ 0.

This implies y = y′, completing the proof. ■

Theorem 2.25. Let H be a Hilbert space and let S be a closed subspace of H. Then
every element x ∈ H has a unique decomposition of the form x = y + z where y ∈ S
and z ∈ S⊥.

Proof: If x ∈ S then the decomposition is clearly x = x + 0. Suppose therefore
that x /∈ S. Let y be the unique point of S satisfying the closest point property from
theorem 2.24, i.e, y satisfies ∥x−y∥ = infw∈S ∥x−w∥.We will show that x = y+(x−y)
is the required decomposition.
If w ∈ S and λ ∈ C, then y + λw ∈ S and

∥x− y∥2 ≤ ∥x− y − λw∥2 = ∥x− y∥2 − 2Reλ(w | x− y) + |λ|2∥w∥2.

We therefore have that

−2Reλ(w | x− y) + |λ|2∥w∥2 ≥ 0.

13
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If λ > 0, then diving by λ and letting λ→ 0 gives

Re(w | x− y) ≤ 0. (2.17)

Similarly, replacing λ by −iλ (λ > 0) , dividing by λ, and letting λ→ 0 gives

Im(w | x− y) ≤ 0. (2.18)

Since y ∈ S implies −y ∈ S, inequalities (2.17) and (2.18) hold also with −w instead
of w. Therefore (w | x− y) = 0 for every w ∈ S, which means that x− y ∈ S⊥. Thus,
the decomposition exists.
For uniqueness, suppose we we have two decompositions for x, x = y+z and x = y′+z′

where y, y′ ∈ S and z, z′ ∈ S⊥. We then have y − y′ ∈ S and z′ − z ∈ S⊥, and
y− y′ = z′ − z. Since S ∩ S⊥ = {0}, we have y− y′ = z′ − z = 0, proving the claim.

■
This theorem is quite useful as it says that every element of H can be uniquely
represented as the sum of an element of S and an element of S⊥. We state this
symbolically as

H = S ⊕ S⊥. (2.19)

This allows us to define very important maps that we will use in detail later on in
section 4.3.

Definition 2.26. Let S be a closed subspace of a Hilbert space H. The map PS :
H → H that sends an element x = y + z ∈ S ⊕ S⊥ to y is called the orthogonal
projection onto S.

Remark 2.27. Suppose S ⊆ H is a closed subspace of a Hilbert space H and PS is
the orthogonal projection of H onto S. We then have the following properties.

(i) PS is an operator with norm less than or equal to 1.

(ii) Ps is idempotent, i.e. P 2
S = PS.

(iii) The restriction of PS to S is the identity operator.

Proof:

(i) Suppose x1 and x2 are elements of H with unique decompositions y1 + z1 and
y2 + z2 in S ⊕ S⊥ respectively. We then have that for α ∈ C, PS(x1 + αx2) =
y1 + αy2 = PS(x1) + αPS(y2), thus showing PS is linear. For boundedness, by
the Pythagoreans theorem 2.7 we have that

14
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∥PSx1∥2 = ∥y1∥2 = ∥x1∥2 − ∥z1∥2 ≤ ∥x1∥2,
which shows that ∥PS∥ ≤ 1. Moreover, for every x ∈ S we have PS(x) = x. It
follows that if S ̸= {0}, and thus PS is not the zero operator, then ∥PS∥ = 1.

Remarks (ii) and (iii) are trivial and follow directly from the definition. ■

We will return to the concept of orthogonal projections later in section 4.3, where
they will be used for defining projection valued measures that will be used in the
spectral theorem.

Corollary 2.27.1. Suppose S is a closed subspace of a Hilbert space H. Then S⊥⊥ =
S.

Proof: If x ∈ S, then for every z ∈ S⊥ we have (x | z) = 0 and so x ∈ S⊥⊥. Thus
S ⊆ S⊥⊥.
For the other direction, suppose x ∈ S⊥⊥. Since S is closed, by 2.25, x = y + z
for some y ∈ S and some z ∈ S⊥. Since y ∈ S, we must have y ∈ S⊥⊥, and
therefore z = x − y ∈ S⊥⊥. Since z ∈ S⊥ also and since S⊥ ∩ S⊥⊥ = {0}, we must
have z = 0, and thus x = y ∈ S, and so S⊥⊥ ⊆ S is true also, completing the proof. ■

The special geometry of Hilbert space allows us to produce a very rigid notion of
basis not available in general Banach spaces. We spend the last part of this section
developing this notion of a Hilbert space basis.

Definition 2.28. Let F ⊆ H be an orthonormal system in a Hilbert space H. We
say that F is maximal among the orthonormal subsets of H, or simply maximal if
whenever G ⊆ H is another orthonormal subset of H such that F ⊆ G, then F = G.

Lemma 2.29. Let S ⊆ H be an orthonormal system in a Hilbert space H, and let
x ∈ H. Then (x | s) ̸= 0 for at most countably many s ∈ S.

Proof: Let Sx := {s ∈ S | (x | s) ̸= 0} and for each n ∈ N, let Sn
x := {s ∈ S | (x |

s) ≥ 1
n
}. It is easily seen that Sx =

⋃∞
n=1 S

n
x . We claim that each Sn

x is finite. Suppose
we have k distinct elements in Sn

x , label them s1, s2, . . . , sk. By Bessel’s inequality
(2.14) we have that

k

(
1

n

)2

=
k∑

i=1

|(x | s)|2 ≤ ∥x∥2.

Thus k is bounded by n2∥x∥2 and so each Sn
x has at most n2∥x∥2 elements. Each Sn

x is
therefore finite, and since Sx is the countable union of finite sets, it is also countable.
■
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Theorem 2.30. Let S be a maximal orthonormal system for a Hilbert space H. Then
for all x ∈ S we have the following relation.

x =
∑
s∈S

(x | s)s (2.20)

Proof: Let S be a such maximal orthonormal system for H. For each x ∈ H, let
Sx := {s ∈ S | (x | s) ̸= 0}. By 2.29, Sx is countable and so we can rewrite this set as
S = {sn | n ∈ N}. Define a sequence (yn)n∈N ∈ HN by

yn =
n∑

k=1

(x | sn)sn.

We claim that (yn)n∈N is a Cauchy sequence. For m > n we have that

∥ym − yn∥2 =

∥∥∥∥∥
m∑

k=n

(x | sk)sk

∥∥∥∥∥
2

=
m∑

k=n

|(x | sk)|2.

By Bessel’s inequality (2.14) we know that the series of positive real numbers∑∞
n=1 |(x | sk)|2 is bounded by ∥x∥2, and is therefore convergent and hence Cauchy.

Thus (yn)n∈N is also Cauchy and since H is complete it converges.
Let y =

∑∞
n=1(x | sn)sn. We make use of the continuity of the inner product in the

following equations.

(y | sk) =

(
lim
n→∞

n∑
j=1

(x | sj)sj | sk

)

= lim
n→∞

(
n∑

j=1

(x | sj)sj | sk

)
= lim

n→∞
(x | sk) = (x | sk).

Thus (x− y | sk) = 0 for all k ∈ N. Repeating this argument for the s ∈ S such that
(x | s) = 0 also gives (x− y | s) = 0, and so the vector x− y is orthogonal to S. If x
were not equal to y, the set S ∪{ x−y

∥x−∥} would be an orthonormal system in H strictly
containing S, contradicting our maximality assumption. It follows that x = y. ■
The above theorem is very useful as it gives us an explicit description for any vector
in a Hilbert space in terms of a maximal orthonormal subset. It therefore motivates
the following definition.

Definition 2.31. We say a subset S of a Hilbert space H is an orthonormal basis ,
or Hilbert space basis, for the Hilbert space H, if it is a maximal orthonormal system.

16
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Theorem 2.32. Every Hilbert space has an orthonormal basis.

Proof: Let H be a Hilbert space and let C be the collection of all orthonormal subsets
of H. Since ∅ is an orthonormal system, C is non-empty. For any chain A ⊆ C, we
have

⋃
A as an upper bound for A that is also an orthonormal system. By Zorn’s

lemma, a maximal orthonormal system in C exists. ■

Example 2.33. Consider the Hilbert space of absolutely square summable sequences
ℓ2. An orthonormal basis is given by the collection {en | n ∈ N} where en =
(0, . . . 0, 1, 0, . . . )︸ ︷︷ ︸

nth position

.

By theorem 2.30 we can write any sequence (xn)n∈N ∈ ℓ2 in terms of this basis by

(xn)n∈N =
∞∑
n=1

((xn)n∈N | en)en.

Corollary 2.33.1. Suppose S ⊆ H is an orthonormal basis for the Hilbert space H.
Then for each x, y ∈ H we have that

(x | y) =
∑
s∈S

(x | s)(y | s) (2.21)

and
∥x∥2 =

∑
s∈S

|(x | s)|2. (2.22)

Proof: Let x, y ∈ H and let Sx,y = {s ∈ S | (x | s) ̸= 0 or (y | s) ̸= 0} = Sx ∪ Sy.
By 2.29, Sx,y is countable. As such, list the elements as Sx,y = {sn | n ∈ N} ⊆ S.
Let x = limn→∞

∑n
j=1(x | sj)sj and y = limn→∞

∑n
k=1(y | sk)sk. By continuity of the

inner product, we have the following.

(x | y) = lim
n→∞

(
n∑

j=1

(x | sj)sj
∣∣∣ n∑

k=1

(y | sk)sk

)

= lim
n→∞

n∑
j,k=1

(x | sj)(y | sk)(sj | sk)

= lim
n→∞

n∑
j=1

(x | sj)(y | sj)

Replacing y with x in the previous sequence of equations gives the second result. ■
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From linear algebra, a similar notion of basis for a general vector space can be defined
as a maximal linearly independent set. This is known as a Hamel basis , and can
equivalently be described as follows.

Definition 2.34. Let V be a vector space. A collection F := {ei | i ∈ I} ⊆ V is a
Hamel basis for V if the following two conditions hold.

(i) Any vector x ∈ V can be written as a finite linear combination of the elements
in F .

(ii) If α1e1 + α2e2 + · · · + αnen = 0 for some finite sum of elements ei ∈ F , then
αi = 0, 1 ≤ i ≤ n.

Similarly to 2.32, using Zorn’s lemma it can be shown that every vector space has a
basis, for a full proof of this see theorem 1.27 in [7]. In fact, it was shown in [4] that
if every vector space has a Hamel basis, then Zorn’s Lemma is true.
For Banach spaces, however, the notion of Hamel basis is not particularly apt, as the
next result shows.

Theorem 2.35. Suppose E is an infinite dimensional Banach space. Then every
Hamel basis for E is uncountable.

Proof: Let E be an infinite dimensional Banach space, and aiming towards contra-
diction suppose that (en)n∈N is a countable Hamel basis for E. By the Baire category
theorem, E is of second category A.10.
For n ∈ N, let Fn = span{e1, . . . , en}. This is a finite dimensional normed space, hence
closed. Clearly E =

⋃∞
n=1 Fn, and so by the Baire category theorem

⋃∞
n=1 (Fn)

o is
dense in E. Thus there exists some n0 ∈ N such that Fn0

◦ ̸= ∅. Let x ∈ Fn0 . Since
the interior is open, there exists ε > 0 such that B(x, ε) ⊆ Fn0 .
Consider the vector en0+1 and take δ > 0 large enough so that ∥1

δ
en0+1∥ < ε, i.e,

1
δ
en0+1 ∈ B(0, ε). Thus x + 1

δ
en0+1 ∈ B(x, ε). But x + 1

δ
en0+1 /∈ Fn0 , contradicting

B(x, ε) ⊆ Fn0 . Thus, no such countable Hamel basis exists. ■

We have seen in this section that every Hilbert space has an orthonormal basis. A
countable basis is obviously easier to work with, and in fact, we can characterise those
Hilbert spaces that have a countable basis.

Theorem 2.36. A Hilbert space H is separable if and only if it has a countable
orthonormal basis.

Proof: Suppose H is separable. Let S be an orthonormal basis for H. Suppose
s1, s2 ∈ S are distinct. Then d(s1, s2) = ∥s1− s2∥ =

√
(s1 − s2 | s1 − s2) =

√
2. Thus

S is discrete when viewed as a metric space.
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Since H is separable, so too is S. Thus S has a countable dense subset. But S is the
only subset of itself that is dense in S, since S has the discrete metric, and so S must
be countable.
Conversely, suppose H has a countable orthonormal basis S = {sn | n ∈ N}. For each
n ∈ N, consider the set

Dn =

{
n∑

j=1

(qj + ipj)sj | qj, pj ∈ Q for 1 ≤ j ≤ n

}
.

Each Dn is countable and their union D =
⋃∞

n=1Dn is countable and dense in H.
Moreover, the closure of D is the linear span of s1, s2, . . . , sn, and so the closure of D
includes all finite linear combinations of the form

∑n
j=1 zjsj where zj ∈ C. By 2.30

each x ∈ H is the limit of such a finite linear combination. Hence the closure of D is
all of H. As D is countable, H is separable.

■
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2.4 Isomorphisms of Hilbert Spaces

In this section we will develop a notion of similarity between Hilbert spaces. In
particular we discuss some different types of isomorphisms between Hilbert spaces
and related results.

Definition 2.37. Let H and K be Hilbert Spaces. We say that H and K are
isometrically isomorphic, and denote this by HK, if there is a surjection T : H → K
such that for all x, y ∈ H we have

(Tx | Ty) = (x | y). (2.23)

Remark 2.38. If T : H → K is an isometric isomorphism between the Hilbert spaces
H and K, it is also linear.
To see this let x, y ∈ H and let α ∈ C. Since T is surjective there exists z ∈ H such
that Tz = T (αx+ y)− (αTx+ Ty). Then consider the following,

(Tz | Tz) = (T (αx+ y)− (αTx+ Ty) | Tz)
= (T (αx+ y) | Tz)− [α(Tx | Tz) + (Ty | Tz)]
= (αx+ y | z)− [α(x | z) + (y | z)]
= 0

Since the inner product is positive definite, it follows that T (αx+ y) = αTx+ y and
so T is linear.

Proposition 2.39. Suppose H and K are Hilbert spaces and T : H → K is a
surjective linear map. Then T is an isometric isomorphism in the sense detailed
above, if and only if it is an isometry.

Proof: Suppose first that T is an isometric isomorphism. Then for all x, y ∈ H we
have (Tx | Ty) = (x | y). Thus ∥Tx∥2 = (Tx | Tx) = (x | x) = ∥x∥2 and so T is an
isometry.
Now suppose that T is an isometry. If x, y ∈ H and α ∈ C, we have that ∥x+αy∥2 =
∥Tx+ αTy∥2. By the polar identity, (2.6), we therefore have that,

∥x∥2 + 2Re [α(x | y)] + |α|2∥y∥2 = ∥Tx∥2 + 2Re [α(Tx | Ty)] + |α|2∥Ty∥2.

Since T is an isometry we have that ∥Tx∥ = ∥x∥ and ∥Ty∥ = ∥y∥, reducing the last
equation to

Re [α(x | y)] = Re [α(Tx | Ty)] .
This is true for all α ∈ C. Setting α = 1 gives Re [(x | y)] = Re [(Tx | Ty)], and
similarly setting α = i gives

Im[(x | y)] = Re [−i(x | y)] = Re [−i(Tx | Ty)] = Im[(Tx | Ty)].
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Thus (x | y) and (Tx | Ty) have the same real and imaginary parts, and are the same.
■

Remark 2.40. Suppose T : H → K is an isometry. Then ∥T∥ = 1. This follows
from the fact that

∥T∥ = sup{∥Tx∥ : x ∈ E1} = sup{∥x∥ : x ∈ E1} = 1

Remark 2.41. If T : H → K is an isometric isomorphism then T−1 : K → H is also
an isometric isomorphism.
To see this, note first that as isometries are injective, T is bijective and linear. Thus
T−1 exists and is also bijective and linear. To see it is an isometry, let y, y′ ∈ K.
Then there exists x, x′ ∈ H respectively such that T−1(y) = x and T−1(y′) = x′, by
bijectivity of T . We then have the following to show T−1 is an isometric isomorphism
as claimed,

(T−1y | T−1y′) = (x | x′) = (Tx | Tx) = (y | y′).

It is easy to show that this concept of isomorphism is an equivalence relation on
any collection of Hilbert spaces. It is also the most appropriate notion of equivalence,
since an inner product is the essential ingredient for a Hilbert space and isomorphic
Hilbert spaces have the “same” inner product.
There is however another important notion of isomorphism between Hilbert spaces
that connects better with the more general setting of Banach spaces. We detail this
now.

Definition 2.42. Let H and K be Hilbert spaces. We say that a linear map T : H →
K is a topological isomorphism, if it is bijective, and both T and T−1 are bounded.

It is easy to see that an isometric isomorphism is always a topological isomorphism.
If T : H → K is an isomorphism in the isometric sense, remark 2.41 says that T−1 is
also an isometric isomorphism. By remark 2.40, both T and T−1 have norm 1 and so
the claims holds.

Theorem 2.43. Suppose H is an infinite dimensional separable Hilbert Space. Then
H is isometrically isomorphic to ℓ2.

Proof: Let H be an infinite dimensional separable Hilbert space. By theorem 2.36,
there exists one countable orthonormal basis (en)n∈N for H. Let T : H → ℓ2 be
defined as follows, for x ∈ H:

T (x) := [(en | x)]n∈N.
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So T maps elements in the Hilbert space to a sequence generated by the inner product
with the orthonormal basis. We must check that this map is a well defined isometric
isomorphism. To see it is well defined, use Bessel’s inequality (2.14) to get that

∥T (x)∥2 =
∞∑
n=1

(en | x)2 ≤ ∥x∥2 <∞.

To see that T is linear let x, y ∈ H and α ∈ C. Then,

T (x+ αy) = [(en | x+ αy)]n∈N = [(en | x)]n∈N + α[(en | y)]n∈N = T (x) + αT (y).

By 2.33.1, we see that (Tx | Ty) = (x | y) and so T preserves the inner product.
Lastly we must show that T is surjective. Let (an)n∈N ∈ ℓ2. Consider the sum
xa =

∑∞
n=1 ansn. By the generalised Pythagorean theorem 2.19 we get that

∥xa∥ =
∞∑
n=1

|an|2 <∞,

and so xa converges. Then note that

T (xa) = [(en | xa)]n∈N =

[(
en
∣∣ ∞∑
k=1

aksk

)]
n∈N

= [an∥en∥2]n∈N = [an]n∈N.

Hence Txa = [an]n∈N and the proof is complete.
■

2.5 Linear Functionals and Weak Topologies

The first main result of this section, the Riesz representation theorem, is fundamental
in the study of Hilbert spaces, and simplifies the study of the dual space of a Hilbert
space to the space itself. It allows also for simplified proofs of other results in func-
tional analysis such as the Hahn–Banach theorem and others. We will first prove a
useful lemma.

Lemma 2.44. Suppose φ is a bounded linear functional on an inner product space
E. Then dim

(
ker(φ)⊥

)
≤ 1.

Proof: If φ is the zero functional then ker(φ) = E. Since E⊥ = {0} we have
dim (ker(φ))⊥ = 0 and so the inequality is true in this case.
Suppose now that φ is not the zero operator. Since ker(φ) = φ−1 ({0}), {0} is closed,
and φ is continuous, it follows that ker(φ) is a closed subspace of E.
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Thus by theorem 2.25, we can decompose E into E = ker(φ)+ker(φ)⊥. Since ker(φ) ̸=
E, the dimension of (ker(φ))⊥ is at least 1. To see that it is not more than 1, suppose
we have two non-zero vectors x and y in (ker(φ))⊥. Since φx ̸= 0 and φy ̸= 0, there
exists α ∈ C such that αφx + φy = 0, and by linearity of φ we have φ(x + αy) = 0.
Thus x+ αy is in the kernel of φ.
On the other hand, since (ker(φ))⊥ is a subspace of E, x+αy ∈ (ker(φ))⊥ also. Since
ker(φ) ∩ (ker(φ))⊥ = {0}, it follows that x + αy = 0. Thus x and y are linearly
dependent, and so the dimension of (ker(φ))⊥ cannot be two or more. We conclude
that dim (ker(φ))⊥ = 1. ■

Theorem 2.45 (Riesz Representation Theorem). Let H be a Hilbert space. For every
φ ∈ H ′, there exists a unique xφ ∈ H called the Riesz Representation of φ, such that
φ(x) = (x | xφ), for all x ∈ H. Furthermore, the norm of xφ coincides with that of
φ, that is, ∥φ∥H′ = ∥xφ∥H .

Proof: If φ is the zero functional, then xφ = 0 clearly satisfies the criteria.
Otherwise assume that φ is a non-zero functional, that is, there exists x ∈ H such
that φ(x) ̸= 0. By lemma 2.44, dim (ker(φ))⊥ = 1. Let z0 ∈ ker(φ)⊥ be a unit vector.
Then for every x ∈ H we have the following,

φ(x) =
φ(x)

φ(z0)
φ(z0) = φ

(
φ(x)

φ(z0)
z0

)
.

Thus, x − φ(x)
φ(z0)

z0 ∈ ker(φ). From this, and using the fact that z0 ∈ ker(φ)⊥ we get
that

0 =

(
x− φ(x)

φ(z0)
z0 | z0

)
= (x | z0)−

φ(x)

φ(z0)
.

It follows that φ(x) = (x | φ(z0)z0).Therefore, let xφ = φ(z0)z0 to get φ(x) = (x | xφ)
for all x ∈ H.
For uniqueness, suppose there is another point x′ ∈ H such that φ(x) = (x | x′)
for all x ∈ H. Then (x | xφ − x′) = (x | xφ) − (x | x′) = φ(x) − φ(x) = 0. Thus
(xφ − x′ | xφ − x′) = 0 and so x′ = xφ.
For the last part, by the Cauchy–Schwarz inequality 2.8 we have that,

∥φ∥ = sup
x∈H1

|φ(x)| = sup
x∈H1

|(x | xφ)| ≤ sup
x∈H1

∥x∥∥xφ∥ = ∥xφ∥.

We also have
∥xφ∥2 = (xφ | xφ) = |φ(xφ)| ≤ ∥φ∥∥xφ∥.

Combining these two inequalities gives the desired result. ■
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Corollary 2.45.1. There is an antilinear bijective isometry between any Hilbert space
H and its dual space H ′.

Proof: Let H be a Hilbert space and define S : H → H ′ as follows.
For x ∈ H define S(x) : H → C by S(x)(y) := (y | x). For x1, x2, y ∈ H, α ∈ C, we
see that

S(x1 + αx2)(y) = (y | x1 + αx2)

= (y | x1) + α(y | x2)

= S(x1)(y) + αS(x2)(y).

Since this holds for all y ∈ H we have S(x1 +αx2) = S(x1) +αS(x2) and S is indeed
antilinear.
To see that it is an isometry, by Cauchy–Schwarz we have that

∥Sx∥ = sup{|Sx(y) | y ∈ H1}
= sup{|(y | x)| | y ∈ H1}
≤ ∥x∥ sup{∥y∥ | y ∈ H1}
= ∥x∥.

For the reverse direction, since y := x
∥x∥ has norm 1 for x ̸= 0, S(x)(y) = 1

∥x∥(x | x) =
∥x∥ is an element of the set {|S(x)(y)| : y ∈ H1} and so ∥x∥ ≤ ∥Sx∥ as desired. As a
result S is also injective. Lastly for the surjectivity, if φ ∈ H ′, the Riesz representation
theorem gives a unique xφ ∈ H such that for all x ∈ H, φ(x) = (x | xφ) = S(xφ)(x).
Thus S(xφ) = φ and the claim holds. ■

Theorem 2.46. Every Hilbert space is reflexive.

Proof: By corollary 2.45.1 there is an anti-linear isometric bijection

S1 : H → H ′

given by S1(x)(y) = (y | x). Continuing on with this, there is another anti-linear
isometric bijection S2 : H ′ → H ′′ given by S2(f, g) = (xg | xf ) where xf , and xg are
the Riesz representatives of f and g respectively. Since the composition of two anti-
linear maps is linear, the composition S2 ◦S1 : H → H∗∗ is an isometric isomorphism.
Lastly, note that J = S2 ◦S1, where J is the canonical embedding of H into its bidual
H ′′ A.2, as for any x ∈ H and any f ∈ H∗ we have (S2 ◦ S1)(x)(f) = (f | S1x) =
f(x) = J(x)(f).

■
We next look at what it means for a sequence in a Hilbert space to converge weakly.
This will allow for more general results to hold as we will see shortly.
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Definition 2.47. A sequence (xn)n∈N of vectors in an inner product space E is called
weakly convergent to a vector x in E if limn→∞(xn | y) = (x | y) for all y ∈ E. This
is denoted by xn ⇀ x.

In contrast, (xn) converges to x strongly if limn→∞ ∥xn − x∥ = 0. It’s easy to see
that strong convergence implies weak convergence. For suppose (xn) converges to x
strongly. By the Cauchy–Schwarz inequality we have |(xn−x | y)| ≤ ∥xn−x∥∥y∥ → 0.
Thus (xn − x | y)→ 0 which gives (xn | y)→ (x | y).

Example 2.48. Let (en)n∈N be an orthonormal sequence in a Hilbert space H. For
any x ∈ H we have by Bessel’s inequlaity 2.20 that the series

∑∞
n=1 |(x | en)|2 is

convergent and hence (en | x) → 0 = (0 | x) as n → ∞. Since x was arbitrary we
conclude that en converges to 0 weakly.
Conversly, for all n ̸= m we have

∥en − em∥2 = ∥en∥2 + ∥em∥2 = 2.

and so (en)n∈N is not Cauchy, hence not strongly convergent.

Theorem 2.49. Weak limits of weakly convergent sequences are unique.

Proof: Let (xn)n∈N be a sequence in a Hilbert space H and suppose xn ⇀ x, and
xn ⇀ z also. Then for all y ∈ H (xn | y) → (x | y) and (xn | y) → (z | y). Since
limits are unique in C, it follows that (x | y) = (z | y). Hence x− z ∈ H⊥ = {0}. ■

Theorem 2.50. Let (xn)n∈N be a weakly convergent sequence in a Hilbert space H.
Then (xn)n∈N is bounded.

Proof: Let (xn)n∈N be a weakly convergent sequence in a Hilbert space H. For
n ∈ N, define fn : H → C by fn(x) := (x | xn). Note that each fn is linear and
∥fn(x)∥ ≤ ∥xn∥∥x∥ and so ∥fn∥ ≤ ∥xn∥ and in particular fn is bounded. Since for
every x ∈ H, the sequence ((x | xn))n∈N converges, it is bounded. Thus there exists
Mx > 0 such that |fn(x)| ≤Mx for all n ∈ N.
By the Uniform Boundedness Principle A.22, there exists a constant M such that
∥fn∥ ≤ M for all n ∈ N. Note that |fn(xn)| = |(xn | xn)| = ∥xn∥2. Consequently
∥fn∥ = ∥xn∥, and so ∥xn∥ ≤M for all n ∈ N. ■

We conclude this section with two key results in functional analysis.
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Theorem 2.51. Let H be a Hilbert space. Then every bounded sequence in H has a
sequentially weakly convergent subsequence.

Proof: Let (hn)n∈N be a bounded sequence in H. Let

H0 = span{hn | n ∈ N}

We note that H0 is separable, as the following set{
n∑

k=1

(qk + ipk)hk | qk, pk ∈ Q, n ∈ N0

}
,

serves as a countable dense subset. For each n ∈ N, let fn : H0 → C be defined by
fn(h) = (h | hn). Observe each fn is an element of H ′ and that ∥fn∥ ≤ ∥hn∥. By A.27,
(fn)n∈N has a subsequence (fnk

)k∈N which converges weak−∗ to a limit f0 ∈ H0.
By the Riesz representation theorem 2.45,there exists h0 ∈ H0 such that
f0(h) = (h | h0) for all h ∈ H0. Thus for every h ∈ H we have that limk→∞(h | hnk

) =
(h | h0).
Let P : H → H0 be the projection map from H onto H0, that is, if x = y + z where
y ∈ H0 and z ∈ H0

⊥, then P (x) = y. For each k ∈ N we have that

((id− P )(h) | hnk
) = ((id− P )(h) | h0).

hence for each h ∈ H we have that limk→∞(hnk
| h) = (h0 | h). Thus (hnk

)k∈N
converges weakly to h0 ∈ H, proving the claim. ■

The previous theorem shows that the closed unit ball of any Hilbert space is sequen-
tially weakly compact. In the more general setting, this holds only for separable
Banach spaces. However, the proof is far more intricate and involves appealing to
theorems such as A.26 and others.

Our last result in this section, the Hahn–Banach theorem for Hilbert spaces, is partic-
ularly nice in this setting as it does not require the use of Zorn’s lemma. Contrastingly,
Zorn’s Lemma is required in the wider Banach space setting. We first prove a useful
lemma.

Lemma 2.52. Suppose E0 and E are normed spaces, and E0 is dense in E. Let F
be a Banach space and suppose f0 : E0 → F be a bounded linear operator. Then f0
may be uniquely extended to a bounded linear operator f : E → F such that f0 and f
have the same norm.
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Proof: By denseness of E0 in E, for each x ∈ E there exists a sequence (xn)n∈N ∈ EN
0

such that limn→∞ xn = x. Hence (xn)n∈N is Cauchy, and since f0 is bounded and linear
we have that

∥f0xn − f0xm∥ = ∥f0(xn − xm)∥
≤ ∥f0∥∥xn − xm∥ → 0.

(2.24)

Thus, (f0xn)n∈N is a Cauchy sequence and hence by completeness of F , there exists
y ∈ F such that limn→∞ f0xn = y. If there is another sequence (x′

n)n∈N ∈ EN
0 such

that limn→∞ x′
n = x, then limn→∞(x′

n−xn) = 0, hence limn→∞(f0x
′
n−f0xn) = 0 also.

Thus, our choice of sequence converging to x is immaterial, and so we can umam-
biguously define f : E → F by f(x) = limn→∞ f0xn, where (xn)n∈N is a sequence in
E0 converging to x.

It is clear that f is linear, as if we have α ∈ C and y ∈ E such that (yn)n∈N such that
limn→∞ yn = y, then

f(x+ αy) = lim
n→∞

(f0xn + αf0yn) = lim
n→∞

f0xn + α lim
n→∞

f0yn = f(x) + αf(y).

It is clear also that f is the only extension of f0. For the norm properties, we have
that

∥fx∥ =
∥∥∥ lim
n→∞

f0xn

∥∥∥
= lim

n→∞
∥f0xn∥

≤ lim
n→∞

∥f0∥∥xn∥

= ∥f0∥∥xn∥.

Thus, ∥f∥ ≤ ∥f0∥. On the other hand, f is an extension of f0 and so the norm of f0
cannot be more than f , i.e. ∥f0∥ ≤ ∥f∥. It follows that ∥f∥ = ∥f0∥. ■

Theorem 2.53 (Hahn–Banach for Hilbert Spaces.). Let H be a Hilbert space and let
H0 ⊆ H be a subspace. Suppose f0 ∈ H ′

0. Then there exists a unique f ∈ H∗ such
that f |H0= f0 and ∥f0∥ = ∥f∥.

Proof: Without loss of generality we may assume H0 is closed as a result of lemma
2.52. Then, being a closed subspace of a Hilbert space H, H0 is also a Hilbert space
and so by Riesz Representation 2.45, there exists xf0 ∈ H such that f0(x) = (x | xf0)
and ∥f0∥ = ∥xf0∥.
Define f : H → C by f(x) := (x | xf0). Clearly f is linear and ∥f(x)∥ = |(x | xf0)| ≤
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∥xf0∥∥x∥ = ∥f0∥∥x∥. Thus ∥f∥ ≤ ∥f0∥. However f is clearly an extension of f0 and
so ∥f0∥ ≤ ∥f∥ also. Thus ∥f∥ = ∥f0∥.

For uniqueness, let φ ∈ H ′ be another extension of f0 to H with the same norm.
Using the Riesz representation once more 2.45, there exists xφ ∈ H such that φ(x) =
(x | xφ) for all x ∈ H. Since ∥φ∥ = ∥f0∥ we have ∥f∥ = ∥φ∥ which in turn means
∥xf0∥ = ∥xφ∥. Now since both f and φ are extensions of f0, they agree on H0. Thus
for all x ∈ H0 f(x) = φ(x) , i.e (x | xf0 − xφ) = 0. In particular xf0 ∈ H0 and so
xf0 ⊥ (xf0 − xφ). Thus, by Pythagoras’ theorem 2.7, we have the following,

∥xf0∥ = ∥xφ∥ = ∥xf0 + (xφ − xf0)∥ =
√
∥xf0∥2 + ∥xf0 − xφ∥2

This can only happen if ∥xf0 − xφ∥ = 0 and so we conclude that xf0 = xφ which
implies f = φ.

■
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3 Operators

In this chapter, we develop the theory of bounded linear operators. A guiding source
for this material is chapter 4 in [8]. Since we will only be dealing with bounded linear
operators, we will simply call them operators from now on unless specified otherwise.
To clarify notation, given operators A and B, we will denote their composition as AB
rather than A ◦B.

3.1 Self-Adjoint Operators

To motivate this section, we begin with the following example. Let A be an operator
on a Hilbert space H. For a fixed y ∈ H the map f : H → C given by f(x) = (Ax | y)
is a bounded linear functional on H. By the Riesz Representation theorem 2.45,
there exists a unique z ∈ H such that f(x) = (x | z) for all x ∈ H, or equivalently,
(Ax | y) = (x | z). If we denote by A∗ the map which to every y ∈ H assigns that
unique z, we then have (Ax | y) = (x | A∗y) for all x, y ∈ H. We call this map the
adjoint of A.

Definition 3.1. Let A be an operator on a Hilbert space H. The operator A∗ : H →
H defined by

(Ax | y) = (x | A∗y)

is called the adjoint operator of A.

Remark 3.2. The adjoint operator is also sometimes called the Hermitian adjoint,
named in honour of the French mathematician Charles Hermite.

Theorem 3.3. Let A be an operator on H. Then the adjoint A∗ is also an operator.
In addition, ∥A∗∥ = ∥A∥ and ∥A∗A∥ = ∥A∥2.

Proof: Let x ∈ H be arbitrary and take a linear combination αy1 + y2 ∈ H. We
then compute the following.

(x | A∗(αy1 + y2)) = (Ax | αy1 + y2)

= α(Ax | y1) + (Ax | y2)
= α(x | A∗y1) + (x | A∗y2)

= (x | αA∗y1 + A∗y2)

This shows the linearity of A∗. For boundedness, we have the following.

∥A∗x∥2 = (A∗x | A∗x) = (A(A∗x) | x)
≤ ∥A(A∗x)∥∥x∥ ≤ ∥A∥∥A∗x∥∥x∥.
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It follows that ∥A∗x∥ ≤ ∥A∥∥x∥, and so ∥A∗∥ ≤ ∥A∥. Interchanging the roles of A
and A∗ in the equations above shows also that ∥A∥ ≤ ∥A∗∥, giving ∥A∥ = ∥A∗∥.
Finally, take some x ∈ H such that ∥x∥ = 1. We then have that

∥Ax∥2 = (Ax | Ax) = (x | A∗Ax) ≤ ∥x∥∥A∗A∥∥x∥ = ∥A∗A∥.

Since
∥A∗A∥ ≤ ∥A∗∥∥A∥ = ∥A∥2,

altogether we get that ∥A∗A∥ = ∥A∥2, completing the assertion. ■

Let A and B be operators on H, with A∗ and B∗ being their respective adjoint oper-
ators, and let α ∈ C. The following properties arise as straightforward computations,
whose proof we omit but can be found in [10], section 4.1.

(i) (A+B)∗ = A∗ +B∗

(ii) (αA)∗ = αA∗

(iii) (A∗)∗ = A

(iv) (AB)∗ = B∗A∗

(v) id∗ = id

Our next result shows that we can characterise the kernel of the adjoint in terms of
the image of the original operator.

Theorem 3.4. Let A be an operator on H. Then A(H)⊥ = ker(A∗).

Proof: Let y ∈ A(H)⊥. For x ∈ H we have (x | A∗y) = (Ax | y) = 0, which shows
y ∈ ker(A∗). On the other hand, if y ∈ ker(A∗) we have (Ax | y) = (x | A∗y) = 0 for
all x ∈ H, which shows y ∈ A(H)⊥. ■

Since orthogonal complements are always closed (2.22), it follows that we can split
the Hilbert space as follows,

H = A(H)⊕
(
A(H)⊥

)⊥
= ker(A∗)⊕ A(H). (By corollary 2.27.1)

Next, we characterise the adjoint operator in the finite-dimensional setting.
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Example 3.5. Let A be an operator on Cn. We can represent A by an n× n matrix
[Aij] with respect to the canonical basis {e1, . . . , en}. The matrix elements are deter-
mined by Aij = (Aej | ei).
Let [A∗

ij] be the matrix representing the adjoint A∗. The i, jth entry A∗
ij is then given

as follows.
A∗

ij = (A∗ej | ei) = (ei | A∗ej) = (Aei | ej) = Aji.

It follows that the matrix representation for the adjoint A∗ is the conjugate transpose
of the matrix representation of A. In the case of a real vector space Rn, this simplifies
further to the transposed matrix.

This example illustrates that the adjoint of an operator and the operator itself are
not necessarily the same. As a result, operators that are equal to their adjoint are
given a special name.

Definition 3.6. Let A be an operator on H. A is called self-adjoint if A = A∗, i.e.
(Ax | y) = (x | Ay) for all x, y ∈ H.

Theorem 3.7. Suppose T is an operator on a Hilbert space H. Then there exist
unique self-adjoint operators A and B such that T = A+ iB.

Proof: Let T be an operator on H. Defined A and B as follows,

A =
1

2
(T + T ∗) and B =

1

2i
(T − T ∗).

A routine check shows A and B are both self-adjoint, and that T = A+ iB. Further-
more, for any x, y ∈ H we have the following,

(Tx | y) = ((A+ iB)x | y)
= (Ax | y) + i(Bx | y)
= (x | Ay) + i(x | By)

= (x | (A− iB)y) = (x | T ∗y).

Thus, (Tx | y) = (x | T ∗y). For uniqueness, suppose there is another decomposition
T = A′+iB′, where A′ and B′ are also self-adjoint operators on H. We then have that
T = A−A′ = iB′− iB. Since T ∗ = (A−A′)∗ = A−A′ = T we have T ∗ = T. On the
other hand, we also have T ∗ = (iB′− iB)∗ = −(iB′− iB) = −T . It therefore follows
that T = −T and so T = 0, hence A = A′ and B = B′. This shows uniqueness,
completing the proof. ■

Our next result gives an alternate method for calculating the operator norm of a
self-adjoint operator.
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Theorem 3.8. Let A be a self-adjoint operator on a Hilbert space H. Then

∥A∥ = sup{|(Ax | x)| | x ∈ H1}.

Proof: Let MA := sup{|(Ax | x) | | x ∈ H1}. By the Cauchy–Schwarz inequality 2.3
it is clear that that MA exists and that MA ≤ ∥A∥.
For the reverse, let x ∈ H be such that Ax ̸= 0. We then define α :=

√
∥Ax∥
∥x∥ and

z := Ax
α
, and compute the following.

∥Ax∥2 = (A(αx) | z)

=
1

4
[(A(αx+ z) | αx+ z)− (A(αx− z) | αx− z)]

≤ 1

4
MA

[
∥αx+ z∥2 + ∥αx− z∥2

]
=

1

2
M(∥αx∥2 + ∥z∥2)

=
1

2
MA

[
α2∥x∥2 + 1

α2
∥Ax∥2

]
= MA∥x∥∥Ax∥

Thus, ∥Ax∥ ≤ M∥x∥ and so when paired with the earlier inequality we have ∥A∥ =
MA. ■

Theorem 3.9. Let A be a self-adjoint operator on a Hilbert space H. If A(H) is
dense in H, then A has an inverse map defined on the image A(H) of A.

Proof: By theorem 3.4 we split the space into H = ker(A∗) ⊕ A(H). Since A(H) is
dense in H, it follows that ker(A∗) = {0}. As a result, ker(A) = {0} because A is
self-adjoint, and so it is injective. Thus A : H → A(H) is bijective and a well-defined
inverse map A−1 : A(H)→ H exists. 1 ■

3.2 Various Types of Operators

In this section, we explore and look at other types of operators, such as normal,
unitary, projection, positive, compact, and finite rank operators.

Definition 3.10. Let A be an operator on a Hilbert space H. An operator B also
defined on H is called an inverse operator of A, if AB = id and BA = id.

1This inverse map may not necessarily be bounded, compare with corollary 3.24.1.
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Remark 3.11. Suppose B1 and B2 are both inverse operators for A. Then B1 =
B1 id = B1AB2 = idB2 = B2. Thus the inverse operator is unique, and we denote it
by A−1.

Definition 3.12. An operator A is called normal if it commutes with its adjoint,
that is, AA∗ = A∗A. Moreover, if this product is the identity, the operator is called
unitary , that is, AA∗ = id = A∗A.

Example 3.13. Let H be the Hilbert space of all sequences of complex sequences
x = (. . . , x−1, x0, x1, x2 . . . ) such that

∑∞
n=−∞ |xn|2 <∞. The inner product is defined

by

(x | y) =
∞∑

n=−∞

xnyn.

Define an operator T ∈ B(H) by T (xn)n∈N = (xn−1)n∈N, i.e. T sends xn to xn−1 for
each n ∈ N. We then have that

(Tx | y) =
∞∑

n=−∞

xn−1yn =
∞∑

n=−∞

xnyn+1 = (x | T−1y).

It follows that T ∗ = T−1, hence T is a unitary operator.

Theorem 3.14. An operator A is normal if and only if ∥Ax∥ = ∥A∗x∥ for all x ∈ H.

Proof: We have that

(A∗Ax | x) = (Ax | Ax) = ∥Ax∥2.

Since A is normal, we also have

(A∗Ax | x) = (AA∗x | x) = (A∗x | A∗x) = ∥A∗x∥2.

Thus ∥Ax∥ = ∥A∗x∥.
For the reverse, suppose ∥Ax∥ = ∥A∗x∥. By the above argument we have (AA∗x |
x) = (A∗Ax | x). By corollary A.40, it follows that A∗A = AA∗, and so A is normal. ■

Theorem 3.15. An operator A defined on a Hilbert space H is isometric if and only
if A∗A = id.

Proof: If A is isometric, then for every x ∈ H we have ∥Ax∥2 = ∥x∥2, hence
(A∗Ax | x) = (Ax | Ax) = ∥x∥2 for all x ∈ H. By A.40, A∗A = id.
Conversely, if A∗A = id, then ∥Ax∥ =

√
(Ax | Ax) =

√
(A∗Ax | x) =

√
(x | x) =

∥x∥. ■
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Theorem 3.16. An operator A is unitary if and only if it is invertible and A−1 = A∗.

Proof: If A is invertible and A−1 = A∗, then A∗A = A−1A = id = AA−1 = AA∗.
■

3.3 Compact Operators

We devote this section entirely to the study of compact operators as they form one
of the most important classes of operators.

Definition 3.17. An operator A on a Hilbert space H is called a compact operator
if A(H1) is precompact, where H1 denotes the unit ball.

Remark 3.18. There are other equivalent definitions for an operator A ∈ B(H) to
be compact, and we will make use of two of them. Let A ∈ B(H). Then the following
are equivalent.

(i) A is compact.

(ii) For any bounded subset S ⊆ H, A(S) is precompact.

(iii) For any bounded sequence (xn)n∈N in H, the sequence (Axn)n∈N contains a
convergent subsequence.

Proof: (i)⇐⇒ (ii). Multiplication by a scalar is a linear homeomorphism, thus A is
compact if and only AH1 is compact if and only if nA(H1) = A(nH1) is compact.
(ii) =⇒ (iii). Let (xn)n∈N be a bounded sequence in H. Then S := {xn | n ∈ N} is a
bounded subset inH, and so A(S) is compact, meaning (Axn)n∈N admits a convergent
subsequence with limit in H.
(iii) =⇒ (ii). Let S ⊆ H be bounded and let (yn)n∈N ∈ A(S). Since S is bounded
and A is an operator, (yn)n∈N is bounded. For each n ∈ N there exists xn ∈ S such
that

∥yn − Axn∥ ≤ 2−n. (3.1)

Since (yn)n∈N is bounded, so is (Axn)n∈N. By hypothesis, there exists a convergent
subsequence (Axnk

)k∈N, and by 3.1, limk→∞ ynk
= limk→∞Axnk

∈ H. Thus (yn)n∈N
has a convergent subsequence and as a result, A(S) is precompact. ■

Example 3.19. Let T : Cn → Cn be a linear map, where Cn is equipped with the
standard inner product. Then T is bounded by A.16. Let (xn)n∈N be a bounded
sequence in Cn. Then since T is an operator, (Txn)n∈N is a bounded sequence. By
the Bolzano–Weierstrass theorem, (Axn)n∈N has a convergent subsequence, thus T is
compact.
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Example 3.20. Not all operators are compact. Take the identity map id on any
Hilbert space H and let (en)n∈N be an orthonormal sequence in H. Then (en)n∈N is a
bounded sequence in H, yet (id en)n∈N = (en)n∈N has no convergent subsequence. To
see this, suppose n and m are distinct natural numbers. We then have that

∥en − em∥ =
√

(en − em | en − em)

=
√

(en | en)− (en | em)− (em | en) + (em | em)
=
√
1− 0− 0 + 1 =

√
2.

Thus, the distance between any two distinct points in the sequence cannot be made
arbitrarily small and no convergent subsequence exists.

Example 3.21. Let H be a Hilbert space. Given fixed elements y and z in H we
can create a compact operator in the following way. Define T : H → H by

T (x) := (x | y)z.

That T is an operator is easy to check. To see that is compact, let (xn)n∈N be a
bounded sequence in H, so there is K > 0 such that ∥xn∥ ≤ K for all n ∈ N. By
Cauchy–Schwarz we know that |(xn | y)| ≤ ∥xn∥∥y∥ ≤ M∥y∥, and so by Bolzano–
Weierstrass, ((xn | y))n∈N contains a convergent subsequence ((xnk

| y))k∈N, whose
limit we denote by l. Then Txkn = (xkn | y)z → lz. Thus T is compact.

Example 3.22. Let S ⊆ H be a finite-dimensional subspace of a Hilbert spaceH. By
A.17 S is closed and thus by 2.25 we can decompose H into S ⊕ S⊥. The projection
operator PS : H → H, given by PS(x) = y where x = y + z is the orthogonal
decomposition, is compact. This is quite easy to see, as for a bounded sequence
(xn)n∈N ∈ HN, its decomposition is also bounded.

Compact operators upgrade the convergence of weakly convergent sequences to strong
convergence, as our next result shows.

Theorem 3.23. Let (xn)n∈N be a weakly convergent sequence with weak limit x in a
Hilbert space H. For every compact operator A on H, the image sequence (Axn)n∈N
converges strongly to Ax. That is if xn ⇀ x, then Axn → Ax.

Proof: Since Axn ⇀ x, for all y ∈ H we have the following.

(Axn | y) = (xn | A∗y)→ (x | A∗y) = (Ax | y).
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Thus Axn converges to Ax weakly. Since weak limits are unique (2.49) and strong
convergence implies weak convergence, the only possible strong limit for (Axn)n∈N is
Ax.

To show that limn→∞ Axn = Ax, suppose otherwise, aiming towards contradiction.
Then there is a subsequence (Axnk

)k∈N of (Axn)n∈N such that

∥Axnk
− Ax∥ ≥ δ for all k ∈ N and some δ > 0.

Since (xn)n∈N is bounded by 2.50 and A is compact, there is a subsequence (Axnkl
)l∈N

of (Axnk
)k∈N for which liml→∞Axnkl

= y ∈ H. Since Axnkl
⇀ Ax as l → ∞, we

must have y = Ax, which is impossible by construction of Axnk
, completing the

contradiction. Hence limn→∞Axn = Ax. ■

Example 3.24. Let (en)n∈N be an orthonormal sequence in a Hilbert space H. From
example 2.48 we know that (en)n∈N converges to 0 weakly. Hence by theorem 3.23,
we conclude that limn→∞Aen = 0 for all compact operators A ∈ B(H).

Corollary 3.24.1. Suppose H is an infinite-dimensional, separable Hilbert space and
A ∈ B(H) is a compact operator. Suppose furthermore that A has an inverse map
A−1 defined on A(H). Then A−1 is unbounded.

Proof: Let (en)n∈N be an orthonormal basis for H which exists by 2.36. Then
limn→∞ Aen = 0 by example 3.24. On the other hand, ∥A−1(Aen)∥ = ∥en∥ = 1,
hence limn→∞A−1(Aen) ̸= 0 and so A−1 is not continuous. ■

Definition 3.25. We denote by K(H) the set of all compact operators on a Hilbert
space H.

K(H) is a vector space over C when equipped with pointwise addition of operators,
a proof of this can be found in [14], 7.14, page 214.

Theorem 3.26. Let A ∈ K(H) and B ∈ B(H). Then AB and BA are both in K(H).

Proof: Let (xn)n∈N be a bounded sequence in H. Since B is bounded the sequence
(Bxn)n∈N is also bounded. Then since A is compact, the sequence (ABxn)n∈N contains
a convergent subsequence. Thus AB is compact. As for BA, by compactness of A
the sequence (Axn)n∈N has a convergent subsequence, call it (AxnK

)k∈N. Then by
boundedness of B, the sequence (BAxnk

)k∈N converges. ■

Definition 3.27. We say an operator A ∈ B(H) is finite rank if the dimension of
A(H) is finite2. We denote by F(H) the collection of all finite rank operators on H.

2Recall that operator for us includes the assumption of boundedness
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Similarly to K(H), F(H) is also a C-vector space when equipped with pointwise
addition of operators, and F(H) ⊆ K(H) as our next result shows.

Theorem 3.28. Let A be a finite rank operator on a Hilbert space H. Then A is a
compact operator.

Proof: Let A be a finite rank operator on H, and so A(H) is finite-dimensional.
Furthermore, if (xn)n∈N is a bounded sequence in H, then (Axn)n∈N is also bounded.
This is straightforward as if ∥xn∥ ≤M for all n ∈ N, we have

∥Axn∥ ≤ ∥A∥M <∞.

It follows by the Bolzano–Weierstrass theorem, page 51, [17], that (Axn)n∈N has a
convergent subsequence, hence A is compact. ■

Our next theorem shows that the set of all compact operators K(H) is closed in the
set of all operators B(H).

Theorem 3.29. Let H be a Hilbert space and suppose (An)n∈N is a sequence of
compact operators in B(H) converging to an operator A ∈ B(H). Then A is also
compact.

Proof: Let (xn)n∈N be a bounded sequence in H. Let M ∈ R+ such that ∥xn∥ ≤M
for all n ∈ N. Since A1 is compact, (xn)n∈N has a subsequence (x1,n)n∈N such that
(A1x1,n)n∈N is convergent. Similarly, by compactness of A2, the sequence (x1,n)n∈N
contains a subsequence (x2,n)n∈N such that (A2x2,n)n∈N is convergent. Carrying on
in this manner, for k ≥ 2 let (xk,n)n∈N be a subsequence of (xk−1,n)n∈N such that
(Akxk,n)n∈N converges. By construction, for each k ∈ N, (Akxn,n)n∈N converges. We
show that the sequence (Axn,n)n∈N converges also.
Let ε > 0. Since limn→∞An = A, there exists k0 ∈ N such that ∥Ak0 − A∥ < ε

3M
.

Next, since (Ak0xn,n)n∈N converges, it is also a Cauchy sequence and thus there exists
j ∈ N such that for all n,m > j we have

∥Ak0xn,n − Ak0xm,m∥ <
ε

3
.

Putting this together, for all n,m > j we have the following.

∥Axn,n − Axm,m∥ ≤ ∥Axn,n − Ak0xn,n∥+ ∥Ak0xn,n − Ak0xm,m∥+ ∥Ak0xm,m − Axm,m∥
∥A− Ak0∥∥xn,n∥+ ∥Ak0xn,n − Ak0xm,m∥+ ∥A− Ak0∥∥xm,m∥

<
ε

3M
M +

ε

3
+

ε

3M
M = ε.
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Thus, (Axn,n)n∈N is Cauchy and so by the completeness of H, (Axn,n)n∈N con-
verges. Hence A is compact.

■
By Theorem 3.3, we know that the adjoint A∗ is always bounded if A is an

operator. The natural question relating to compactness is whether this holds true
also for A ∈ K(H). This leads to our final result in this section.

Theorem 3.30. Let A be a compact operator on a Hilbert space H. Then the adjoint
operator A∗ is also compact.

Proof: Let (xn)n∈N be a bounded sequence in H, and let M ∈ R+ be such that
∥xn∥ ≤ M for all n ∈ N. Define a sequence (yn)n∈N in H by yn := A∗xn. Since
A∗ is bounded, (yn)n∈N is bounded also. By compactness of A, (yn)n∈N contains a
subsequence (ynk

)k∈⋉ such that (Aynk
)k∈N converges. For all n,m ∈ N we have the

following.

∥ykm − ykn∥2 = ∥A∗xkm − A∗xkn∥2

= (A∗(xkm − xkn) | A∗(xkm − xkn))

= (AA∗(xkm − xkn) | (xkm − xkn))

≤ ∥AA∗(xkm − xkn)∥xkm − xkn)∥
≤ 2M∥Aykm − Aykn∥ → 0.

Thus (A∗xnk
)n∈N is a Cauchy sequence and by the completeness of H converges,

proving the compactness of A∗. ■
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4 Spectral Theory

In this chapter, we will look to develop the spectral theorem for compact self-adjoint
operators, before proving it for self-adjoint operators more generally, i.e. without the
compactness assumption. Sections 1.2 and 2.5 of [13] are used, along with chapter 5
of [10]. Chapter 8 of [9] is also followed closely.

4.1 The Spectrum of an Operator.

To begin this section, we define and look at eigenvalues and eigenvectors of matrices.
Let A ∈Mn(C) be an n× n matrix.

Definition 4.1. We say that an element λ ∈ C is an eigenvalue of A if there exists
x ∈ Cn \{0} such that Ax = λx. In this case, x is called an eigenvector corresponding
to λ.

Remark 4.2. It is not hard to see that if λ is an eigenvalue of A and x is a correspond-
ing eigenvector, then any non-zero y ∈ span(x) is also an eigenvector corresponding
to λ. Thus we may sometimes refer to the subspace of all eigenvectors corresponding
to λ as the eigenspace with respect to λ, and denote it by Eig(λ).

Example 4.3. Consider the matrix A =

(
0 −1
1 0

)
. To calculate the eigenvalues of A,

we seek λ ∈ C\{0} such that A

(
x
y

)
= λ

(
x
y

)
. This reduces to solving the following

system of equations, {
−y = λx

x = λy

This gives λ2 = −1, so the two solutions are λ = ±i. An easy calculation shows that

Eig(i) = span

{(
1
−i

)}
and similarly Eig(i) = span

{(
1
i

)}
.

Example 4.4. As an example of an operator without any eigenvalues, consider the
right shift operatorA : ℓ2 → ℓ2 that sends a sequence (x1, x2, x3, . . . ) to (0, x1, x2, x3, . . . ).
This cannot have any eigenvalues, otherwise, there would be some λ such that
(0, x1, x2, x3, . . . ) = (λx1, λx2, λx3, . . . ). We see that no matter what value λ assumes,
it forces xn to be zero for all n ∈ N , and so we would have a zero eigenvector, a clear
contradiction.

As the previous example shows, not all operators have eigenvalues. We therefore,
want to generalise the concept of eigenvalue, which leads to the notion of spectrum.
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Definition 4.5. Let A ∈ B(H) where H is a complex Hilbert space. The spectrum
of A is defined as

σ(A) := {λ ∈ C | A− λI is not bijective }.

Similarly, the resolvent set of A is defined as

ρ(A) := {λ ∈ C | A− λI is bijective and (A− λI)−1 is bounded }.

Remark 4.6. By the bounded inverse theorem A.23, if A − λI is bijective then
(A− λI)−1 is bounded as a consequence. Thus σ(A) = C \ ρ(A).

Remark 4.7. The spectrum σ(A) for any operator A ∈ B(H) is always non-empty.
For a proof of this, see [9], proposition 7.5.

Definition 4.8. Let A ∈ B(H) where H is a complex Hilbert space. We then define
the following sets.

• Point Spectrum :
σp(A) = {λ ∈ C | A− λI is not injective }.

• Continuous Spectrum :
σc(A) = {λ ∈ C | A− λI injective but not surjective and Ran(A− λI) = H}.

• Resolvent Spectrum :
σr(A) = {λ ∈ C | A− λI injective but not surjective and Ran(A− λI) ̸= H}.

Proposition 4.9. Let A ∈ B(H). Then σ(A) = σp(A) ∪ σc(A) ∪ σr(A).

Proof: All that is needed to show is σ(A) ⊆ σp(A)∪ σc(A)∪ σr(A), since the reverse
inclusion is trivial.
Let λ ∈ σ(A). Then A − λI is not bijective, so either it is not injective, or it is not
surjective. If it is not injective, then λ ∈ σp(A). If it is injective, then then it must
not be surjective, i.e. Ran(A − λI) ̸= H. This decomposes further into the case
where Ran(A− λI) is dense in H or not, giving the cases λ ∈ σc(A) and λ ∈ σr(A)
respectively. ■

Example 4.10. Let T : Cn → Cn be a linear map with corresponding matrix T :=
[Tij]. From basic linear algebra, we know that T has n eigenvalues λ1, λ2, . . . , λn when
counting for multiplicity and that the eigenvalues are the roots of the characteristic
polynomial P (λ) = det(T − λid). Since (T − λid)−1 is bounded when λ is not
an eigenvalue, it follows that the spectrum of T is comprised entirely of the point
spectrum. Thus the resolvent set is the complex plane less a finite number of points,
namely ρ(T ) = C \ {(λk)

n
k=1}.
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Lemma 4.11 (Neumann’s Lemma). Let H be a Hilbert space and let T ∈ B(H) be
an operator with norm less than 1. Then the operator I − T has an inverse operator
(I − T )−1 on H.

Proof: Consider the infinite series S = I +
∑∞

n=1 T
n = I + T + T 2 + · · ·+ T n + . . . .

Using the fact that absolute convergence implies convergence in a Hilbert space A.21,
the S converges by the comparison test because ∥T n∥ ≤ ∥T∥n for all n ∈ N and the se-
ries

∑∞
n=0 ∥T∥n is convergent since ∥T∥ < 1. We then make the following calculations.

(I − T )

(
n∑

k=0

T k

)
=

(
n∑

k=0

T k

)
(I − T ) =

n∑
k=0

(T k − T k+1) = I − T n+1.

Since ∥T n − 0∥ = ∥T n∥ ≤ ∥T∥n → 0, it follows that

lim
n→∞

(I − T )

(
n∑

k=0

T k

)
= I = lim

n→∞

(
n∑

k=0

T k

)
(I − T ),

or equivalently,

(I − T )S = (I − T ).

Thus, (I − T ) is invertible with inverse operator equal to S. ■

Theorem 4.12. Let H be a Hilbert space and let A ∈ B(H) be an operator on H.
Then the resolvent set ρ(A) is open, hence, the spectrum σ(A) is closed.

Proof: If ρ(A) = ∅ then ρ(A) is obviously closed, so suppose ρ(A) ̸= ∅. Let µ ∈ ρ(A).
Then (A− µI)−1 is an operator on H. For λ ∈ C we have the following,

A− λI = (A− µI)− (λ− µ)I = (A− µI)(I − (λ− µ)(A− µI)−1).

By Neumann’s Lemma 4.11, this shows that A − λI is an invertible operator with
bounded inverse, whenever we have that

∥(λ− µ)(A− µI)−1∥ = |λ− µ|∥(A− µI)−1∥ < 1,

or equivalently, whenever |λ − µ| < 1
∥A−µI∥−1 . This inequality describes a circle in C

with centre µ, proving that ρ(A) is open.
Lastly, the closedness of the spectrum follows from the fact that σ(A) = C\ρ(A). ■

Theorem 4.13. Let H be a Hilbert space and let A ∈ B(H) be an operator on H.
Then the spectrum σ(A) is a compact set in C contained in the circle of radius ∥A∥
centred about the origin.
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Proof: Let λ ∈ C be such that |λ| > ∥A∥. We then have that

A− λI = −λ
(
I − 1

λ
A

)
has a bounded inverse since ∥

(
1
λ

)
A∥ < 1 by Neumann’s Lemma 4.11, hence λ ∈ ρ(A).

Consequently, λ ∈ σ(A) implies that |λ| ≤ ∥A∥, and so σ(A) is bounded. However,
from 4.12 we know that σ(A) is also closed. By the Bolzano–Weierstrass theorem, it
follows σ(A) is compact. ■

4.2 The Spectral Theorem for Compact Self-Adjoint Opera-
tors.

In this section, we state and prove the spectral theorem for compact self-adjoint op-
erators. A guiding source is section 5.3 in [10].

For a compact self-adjoint operator A on a Hilbert space H, by 3.8, we have the
following alternative formula for calculating the operator norm ∥A∥, namely

∥A∥ = sup{|(Ax | x)| | x ∈ H1}.

Proposition 4.14. Let A ∈ B(H) be a self-adjoint operator on a Hilbert space H.
Then for all λ in the spectrum of A it holds that

|λ| ≤ sup{|(Ax | x)| | x ∈ H1}.

Proof: This follows as a direct consequence of theorem 4.13. ■

Example 4.15. Let H be an infinite dimensional separable Hilbert space. By the-
orem 2.36, H has a countable orthonormal basis, call it (en)n∈N. We define a map
A : H → H called the left shift on H with respect to this basis, defined by the
following,

A(x) = A

(
∞∑
n=1

(x | en)en

)
:=

∞∑
n=2

(x | en)en−1, for all x ∈ H.

It can be shown that A is bounded and linear. We determine the spectrum σ(A).
Suppose x ∈ H is an eigenvector for A. Then there exists λ ∈ C such that

A(x) = A

(
∞∑
n=1

(x | en)en

)
=

∞∑
n=2

(x | en)en−1 = λ

∞∑
n=1

(x | en)en.
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This gives a recursive relation and for each n ∈ N≥2 we have (x | en) = λn−1(x | en−1).

Suppose (x | e1) = 1. Then (x | en) = λn−1 for all n ∈ N≥2, and hence x =∑∞
n=1 λ

n−1en is an eigenvector corresponding to λ if and only if the sum defines a
vector x ∈ H, and since H is complete, it is easy to see that this happens if and only
if
∑∞

n=1 |λn−1|2 < ∞. The latter is the case if and only if |λ| < 1. Hence, the open
unit disc is contained in the spectrum σ(A).

Conversly, for all x ∈ H we have that

∥Ax∥2 =
∞∑
n=2

|(x | en)|2 ≤
∞∑
n=1

|(x | en)|2 = ∥x∥2.

Since ∥Aen∥ = 1 for all n ≥ 2 we also get that ∥A∥ = 1. By theorem 4.13, this implies
that σ(A) is contained in the closed unit disc about 0. Moreover, since σ(A) is closed
by 4.12, it follows that σ(A) is exactly the closed unit disc in C.

Theorem 4.16. Let A : H → H be a self-adjoint operator on a Hilbert space H. Then
all of its eigenvalues belong to R. Moreover, any pair of eigenvectors corresponding
to different eigenvalues is orthogonal.

Proof: By the self-adjoint property of A, we have that

(Ax | y) = (x | Ay), for all x, y ∈ H.

If λ is an eigenvalue with corresponding non-zero eigenvector x ∈ H we then have

λ(x | x) = (λx | x) = (Ax | x) = (x | Ax) = (x | λx) = λ(x | x).

Since x is not zero, (x | x) is non-zero also, hence λ = λ, proving the first claim.
For the second bit, suppose we have another distinct eigenvalue µ ∈ C with some
corresponding eigenvector 0 ̸= y ∈ H. We then have the following.

λ(x | y) = (λx | y) = (Ax | y) = (x | Ay) = (x | µy) = µ(x | y) = µ(x | y).

Since λ and µ are distinct, we have that (x | y) = 0, hence x ⊥ y. ■

Definition 4.17. Let A ∈ B(H) be an operator on a Hilbert space H. We say a
scalar λ ∈ C is an approximate eigenvalue for A, if there exists a sequence of unit
vectors (xn)n∈N ∈ HN such that

lim
n→∞

(A− λI)xn = 0.

The set of approximate eigenvalues is called the approximate point spectrum and is
denoted by σap(A).
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Theorem 4.18. Let A ∈ B(H) be a self-adjoint operator on a Hilbert space H. Then
σap(A) is non-empty.

Proof: Recall that since ∥A∥ = sup{|(Ax | x)| | x ∈ H1}, there exists a sequence of
unit vectors (yn)n∈N in H such that limn→∞ |(Ayn | yn)| = ∥A∥.
Since A is self-adjoint, (Ayn | yn) is a real number, hence there is a subsequence
(xn)n∈N of (yn)n∈N such that either limn→∞(Axn | xn) = ∥A∥, or limn→∞(Axn | xn) =
−∥A∥. Let λ be either positive or negative ∥A∥. We then have the following,

∥(A− λI)xn∥2 = (Axn − λxn | Axn − λxn)

= ∥Axn∥2 + λ2∥xn∥2 − 2λ(Axn | xn)

≤ ∥A∥2 + λ2 − 2λ(Axn | xn)

= 2λ2 − 2λ(Axn | xn)→ 2λ2 − 2λ2 = 0. (Asn→∞)

Thus, ∥(A− λI)xn∥ → 0, proving the claim. ■

Remark 4.19. For an operator A ∈ B(H), the approximate point spectrum is con-
tained in the spectrum, i.e. σap(A) ⊆ σ(A). To see this, suppose λ ∈ σap(A), so there
is a sequence of unit vectors (xn)n∈N ∈ HN such that ∥(A−λI)xn∥ → 0. Thus A−λI
is clearly not bounded from below, that is, there is no constant C > 0 such that
∥(A − λI)x∥ ≤ C∥x∥ for all x ∈ H. Since an operator is not invertible if it is not
bounded below A.24, it follows that A− λI is not bijective, hence λ ∈ σ(A).

Our next result shows that a compact, self-adjoint operator on a Hilbert space always
has an eigenvalue.

Theorem 4.20. Let A ∈ B(H) be a compact, self-adjoint operator on a Hilbert space
H. Then at least one of ∥A∥ or −∥A∥ is an eigenvalue for A.

Proof: If ∥A∥ = 0 the claim follows trivially, so suppose ∥A∥ ≠ 0.
Let λ = ±∥A∥. By theorem 4.18 there is a sequence of unit vectors (xn)n∈N in H such
that limn→∞(A − λI)xn = 0, where λ is either ∥A∥ or −∥A∥. Since A is compact,
the sequence (xn)n∈N has a subsequence (xnk

)k∈N such that (Axnk
)k∈N is convergent.

Since limk→∞(Axnk
−λxnk

) = 0 it follows that limk→∞ λxnk
= limk→∞[Axnk

−(Axnk
−

λxnk
)] exists. Moreover, multiplication by a scalar does not affect convergence, thus

limk→∞ xnk
= x for some x ∈ H. By continuity of the norm A.30, since ∥xn∥ = 1 for

all n ∈ N, we also have ∥x∥ = 1.
By construction, we have Ax = λx, where λ = ±∥A∥ and x ̸= 0, proving the claim.
■

Corollary 4.20.1. Let A be a compact, self-adjoint operator on a Hilbert space H.
Then the operator norm is given by

∥A∥ = max{|(Ax | x)| | x ∈ H1}.
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Moreover, the maximum value is attained for a non-zero eigenvector corresponding to
the eigenvalue ∥A∥ or −∥A∥.

Proof: By theorem 4.20, there is a unit vector x ∈ H such that Ax = λx, where
λ = ±∥A∥. From this it follows that

∥Ax∥ = ∥λx∥ = |λ|∥x∥ = ∥A∥ = sup{|(Ax | x)| | x ∈ H1}.

Thus, the supremum is attained at x and can be replaced with a maximum. ■

Proposition 4.21. Let A be a compact operator on a Hilbert space H, and suppose
that A has a non-zero eigenvalue λ. Then the eigenspace associated to λ, Eig(λ), is
finite dimensional.

Proof: Suppose otherwise, that is, Eig(λ) is infinite-dimensional. Choose an or-
thonormal sequence (xn)n∈N in Eig(λ) such that

∥Axn − Axm∥2 = |λ|2∥xn − xm∥2 = 2|λ|2 > 0, for n ̸= m.

Thus (Axn)n∈N has no convergent subsequences, hence A cannot be compact. This
provides the necessary contradiction. ■

We are now ready to prove the main result of this section.

Theorem 4.22 (Spectral theorem - Compact Operators.). Let A be a compact, self-
adjoint operator on a separable Hilbert space H of infinite dimension. Then H admits
an orthonormal basis (en)n∈N consisting of eigenvectors of A. Moreover, the enumer-
ation of the infinite sequence of basis vectors (en)n∈N can be chosen such that the
sequence of corresponding eigenvalues (λn)n∈N decreases numerically,

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ . . . , and λn → 0 as n→∞.

Lastly, we may describe A using the basis of eigenvectors as follows. For x ∈ H, we
have

Ax =
∞∑
n=1

λn(x | en)en, where x =
∞∑
n=1

(x | en)en.

Proof: By corollary 4.20.1, the compact, self-adjoint operator A has at least one
eigenvalue, λ1 = ±max{|(Ax | x)| | x ∈ H1}. Let e1 ∈ H be a corresponding unit
eigenvector.
Let V1 = span{e1}⊥ be the orthogonal complement of the 1−dimensional subspace
spanned by the vector e1. By 2.22, V1 is a closed subspace of H and hence is also a
Hilbert space. For x ∈ V1, since λ1 ∈ R, we have the following,

(Ax | e1) = (x | Ae1) = λ1(x | e1) = 0.
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Thus if x ∈ V1, Ax ∈ V1, and so V1 is invariant under A. Thus A can be considered as
a compact, self-adjoint operator on the Hilbert space V1. Using theorem 4.20 again,
we get a second eigenvalue for A within V1,

λ2 = ±max{|(Ax | x)| | x ∈ V1, ∥x∥ ≤ 1},

and a corresponding unit vector e2 ∈ V1 for λ2. It is clear from construction that
|λ1| ≥ |λ2| and that e1 ⊥ e2.
Next, we repeat this process and let V2 = span{e1, e2}⊥. Clearly (Ax | e1) = 0
and (Ax | e2) = 0 where x ∈ span{e1, e2}⊥, and so V2 is invariant under A, which
can thus be considered a compact self-adjoint operator on V2. Once again, theorem
4.20 provides a third eigenvalue λ3 corresponding to a unit eigenvector e3 also in V2.
Continuing on in this manner, we get an orthonormal sequence of eigenvectors (en)n∈N
and a decreasing sequence (λn)n∈N of corresponding eigenvalues associated with the
following sequence of subspaces,

· · · ⊆ Vn ⊆ Vn−1 ⊆ · · · ⊆ V1 ⊆ H.

From example 2.48, (en)n∈N converges weakly to 0, and since A is compact, by 3.23,
(Aen)n∈N converges to 0 strongly. This proves that limn→∞ |λn| = limn→∞ ∥Aen∥ = 0.

Next, let U =
{
x ∈ H | x =

∑∞
n=1 αnen, for some (αn)n∈N ∈ CN

}
. Then (en)n∈N is an

orthonormal basis for U .
To see this, suppose F ⊆ U is another orthonormal system such that {en | n ∈ N} ⊆
F, and let f ∈ F. By definition, there is (αn)n∈N such that f =

∑∞
n=1 αnen. Let

em ∈ {en | n ∈ N} be arbitrary and consider the following.

(f | em) =
∞∑
n=1

αn(en | em)

= 0 + 0 + . . . αm(em | em) + 0 + · · · = αm.

Thus, if (f | em) were 0 for every m ∈ N, then αm = 0 for every m ∈ N also. Then f
would be the zero vector, contradicting its membership of F. Thus there exists some
m ∈ N such that (f | em) = 1 and since F is orthonormal, it follows f = em, and so
F ⊆ {en | n ∈ N}.
Moreover, each x ∈ U has a unique decomposition with respect to (en)n∈N. To see
this, suppose x =

∑∞
n=1 anen =

∑∞
n=1 βnen. For a fixed m ∈ N, we have
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0 = (x− x | em)

=

(
∞∑
n=1

(αn − βn)en | em

)

=
∞∑
n=1

αn(en | em)−
∞∑
n=1

βn(en | em)

= αm(em | em)− βm(em | em) = αm − βm.

Thus, αn = βn for all natural numbers n and so the decomposition is unique.

This allows us to define a natural isomorphism T : U → ℓ2 that maps a basis element
en in U to the the basis vector (0, 0, . . . , 1, 0 . . . , )︸ ︷︷ ︸

In the nth slot

in ℓ2. For x = (xn)n∈N ∈ ℓ2, we have

that

T

(
∞∑
n=1

xnen

)
= x,

and so T is surjective. Furthermore, for any x =
∑∞

n=1 αnen ∈ U we have

∥Tx∥ =

√√√√ ∞∑
n=1

α2
n =

√
(x | x) = 1 · ∥x∥.

Thus, U ∼= ℓ2, and since Isometric isomorphisms preserve completeness, it follows
that U is closed.

We next show that A is the zero operator when restricted to U⊥, i.e. Ay = 0, for all
y ∈ U⊥.
This is trivially true for y = 0 so suppose y ∈ U⊥ is non-zero. Let y1 = y

∥y∥ , and so

y can be written as y = ∥y∥y1. We then get that (Ay | y) = ∥y∥2(Ay1 | y1). Since
y1 ∈ Vn for all n ∈ N, it follows that |(Ay1 | y1)| ≤ |λn| for all n ∈ N, and consequently
that

|(Ay | y)| ≤ ∥y2∥|λn| → 0 as n→∞.

We conclude that (Ay | y) = 0 for all y ∈ U⊥, hence A must be the zero operator on
U⊥.

Now let (fn)n∈N ∈
(
U⊥)N be an orthonormal basis for U⊥, so that {en | n ∈ N}∪{fn |

n ∈ N} is an orthonormal basis for H. Since Afn = 0 for all n ∈ N, each fn is is
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an eigenvector for A with corresponding eigenvalue equal to 0. For each n ∈ N, let
(an)n∈N be the sequence given as follows,

an =

{
ek n is odd andn = 2k − 1

fk n is even andn = 2k

This gives (an)n∈N = (e1, f1, e2, f2, . . . ) with corresponding sequence of eigenvalues
(λ1, 0, λ2, 0, λ3, 0, . . . ). Cleary this sequence of eigenvalues still converges to 0 since all
the new eigenvalues added to the sequence are 0.

Finally, from 2.30 for each x ∈ H we have x =
∑∞

n=1(x | an)an. By continuity of A
we then have the following,

Ax = A

(
∞∑
n=1

(x | an)an

)

=
∞∑
n=1

(x | an)Aan

=
∞∑
n=1

λn(x | en)en.

Thus (an)n∈N satisfies the criteria of the theorem and the proof is complete. ■
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4.3 Projection Valued Measures and the General Spectral
Theorem.

In the last section of this chapter, we provide a version of the spectral theorem for
self-adjoint operators, relaxing the added assumption of compactness. This requires
moving away from the discrete setting of an infinite sum seen in the last section.
Although the modern approach in the literature uses techniques from operator the-
ory and C∗ algebras, here we manage to avoid this and provide a proof using solely
measure-theoretic arguments. Guiding sources for this section include section 2.5 in
[13], chapter 9, section 2 in [6], and chapters 7 and 8 in [9]. General concepts in
measure theory are also used from [2].

Recall from section 2.3, that for a closed subspace S of a Hilbert space H, there is a
unique decomposition of H as follows, H = S ⊕ S⊥. As a result, we have a unique
map PS : H → H called the orthogonal projection onto S, some properties of which
are listed in remark 2.27. Another important property of an PS is that it is always
self-adjoint. To see this, suppose x1, x2 are elements in H with unique decompositions
y1 + z1 and y2 + z2 respectively, both in S ⊕ S⊥. We then have the following,

(PS(x1) | x2) = (y1 | y2 + z2)

= (y1 | y2) + (y1 | z2)
= (y1 | y2) + (z1 | y2)
= (x1 | y2) = (x1 | PS(x2))

It turns out that it is convenient to describe closed subspaces of a Hilbert space in
terms of the associated orthogonal projection operators, when one wants to formulate
a spectral theorem that doesn’t require compactness. The function that associates
these subspaces to orthogonal projections has properties similar to those of a measure,
and so the term projection valued measure is used.

Definition 4.23. Let X be a set and let Ω be a σ-algebra on X. A function µ :
Ω→ B(H) is called a projection valued measure on X if the following conditions are
satisfied.

(i) For each E ∈ Ω, µ(E) is an orthogonal projection.

(ii) µ(∅) = 0 and µ(X) = idH .

(iii) If (En)n∈N ∈ ΩN is a sequence of mutually disjoint elements of the σ-algebra Ω,
then for all x ∈ H we have that
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µ

(
∞⋃
n=1

En

)
x =

∞∑
n=1

µ(En)x.

(iv) For every E1, E2 ∈ Ω, µ(E1 ∩ E2) = µ(E1)µ(E2).

Remark 4.24. For any projection valued measure µ and any element x in the Hilbert
space, we can form an ordinary real-valued measure µx by the following relation.

µx(E) := (µ(E)x | x), whereE ∈ Ω.

This observation allows us to construct a link between integration with respect to a
projection-valued measure and integration with respect to an ordinary measure.

Our first result of this section shows that the spectrum of p(A), where p is some
polynomial and A is an operator, consists exactly of numbers of the form p(λ) where
λ is in the spectrum of A.

Lemma 4.25 (Spectral Mapping Lemma). Let A ∈ B(H) be an operator on a Hilbert
space H and let p be a polynomial. Then,

σ(p(A)) = p(σ(A))

Proof: First suppose that deg(p) = 0, and so p(x) = a for some constant a ∈ C. Then
p(A) = a idH . The map x 7→ (a− λ)x on H is always bijective unless λ = a, in which
case it is not bijective. Thus σ(p(A)) = {a}. Conversely, p(σ(A)) ⊆ p(C) = {a}, and
so the claim holds for constant polynomials.

Now suppose p(x) =
∑n

i=0 aix
i where n ≥ 1 and let λ ∈ σ(A). We then have that

p(A)− p(λ) idH = an(A
n − λn idH) + an−1(A

n−1 − λn−1 idH) + · · ·+ a0(idH − λ idH)

=
n∑

k=0

an−k(A
n−k − λn−k idH).

Also note that for any k we can factor Ak − λkidH in the following way,

Ak−λkidH = (A−λ idH)(A
k−1+λAk−2+ · · ·+λk−1 idH) = (A−λ idH)

k∑
i=1

λi−1Ak−i.
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Combining these two gives the following,

p(A)− p(λ)idH = (A− λ idH)

(
n∑

k=0

[
an−k

(
n−k∑
i=1

λi−1An−k−i

)])
:= (A− λ idH)q(A),

where we have shortened the right-hand side to include q which is a polynomial de-
pending on λ. Since λ ∈ σ(A), A−λidH is not bijective, and it therefore follows that
(A − λ idH)q(A) = p(A) − p(λ) idH is also not bijective, hence p(λ) ∈ σ(p(A)). This
gives the first inclusion, i.e. p(σ(A)) ⊆ σ(p(A)).

For the reverse, suppose α ∈ σ(p(A)), that is, p(A) − α idH is not bijective. Since
p(z)− α is a degree n polynomial in C which is algebraically closed, we can factor it
by its roots b1, b2, . . . , bn as follows,

p(z)− α = c(z − b1)(z − b2) . . . (z − bn). (4.1)

This in turn implies that

p(A)− α idH = c(A− b1 idH)(A− b2 idH) . . . (A− bn idH).

Now since P (A) − α idH is not bijective, it follows there is i ∈ {1, . . . , n} such that
A − bi idH is not bijective, thus bi ∈ σ(A). From 4.1 it follows that p(bi) − α = 0,
hence α ∈ p(σ(A)), completing the reverse inclusion.

■

Definition 4.26. Let C(A,R) denote the set of real-valued continuous functions
defined on a set A ⊆ C, that is,

C(A,R) = {f ∈ RA | f is continuous}.

Definition 4.27. Let A ∈ B(H) be an operator. The spectral radius of A, denoted
by r(A) is the largest value in magnitude of the spectral values of A, that is,

r(A) = sup
λ∈σ(A)

|λ|.

Remark 4.28. By theorem 4.13, for any operator A ∈ B(H), we have r(A) ≤ ∥A∥.
Furthermore, for self-adjoint operators, theorem 4.18 says that both ∥A∥ and −∥A∥
are approximate eigenvalues for A. Since σap(A) ⊆ σ(A) by remark 4.19, it follows
∥A∥ ∈ σ(A), hence the spectral radius and the norm coincide for the class of self-
adjoint operators.
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Our next main results show in fact that spectrum is contained entirely in the real line
for self-adjoint operators. We first prove a useful lemma.

Lemma 4.29. Suppose A ∈ B(H) is self-adjoint. Then for all λ = a + ib ∈ C we
have

((A− λ idH)x | (A− λ idH)x) ≥ b2(x | x).

Proof: Let A and λ be given as in the hypotheses and compute the following.

((A− (a+ ib) idH)x | (A− (a+ ib) idH)x) = ((A− a idH)x | (A− a idH)x)

+ ib((A− a idH)x | x)− ib(x | (A− a idH)x) + b2(x | x).

Since A is self-adjoint, we see that (A − a idH)
∗ = A∗ − a idH

∗ = A − a idH and
so A − a idH is self-adjoint also. It follows that the second and third terms on the
right-hand side of the above equation cancel, leaving the following,

((A− (a+ ib) idH)x | (A− (a+ ib) idH)x) = ((A− a idH)x | (A− a idH)x) + b2(x | x),

from which the result follows. ■

Theorem 4.30. Let A ∈ B(H) be an operator on a Hilbert space H. If A is self-
adjoint, then σ(A) ⊆ R.

Proof: Let A ∈ B(H) be self-adjoint. Suppose λ = a + ib and b is non-zero. We
wish to show λ /∈ σ(A), or equivalently by remark 4.6, that λ ∈ ρ(A). To this end
we must show that A − λ idH is bijective and (A − λ idH)

−1 is bounded. By 3.4 we
have that Ran(A− λ idH)

⊥ = ker((A−λ idH)
∗) = ker(A−λ idH). Thus by orthogonal

decomposition 2.25 we have that

H = Ran(A− λ idH)⊕ ker(A− λ idH) (4.2)

Suppose x ∈ ker(A−λ idH). Using the fact that A is self-adjoint, we get the following
set of equations,

λ(x | x) = (x | λx) = (x | Ax)
= (Ax | x)
= (λx | x)
= λ(x | x).

Since λ ̸= λ, we must have x = 0, and so ker(A − λ idH) = {0}. Thus by (4.2),
Ran(A− λ idH) is dense in H. To show it is in fact the whole space H, let y ∈ H
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and suppose yn = (A − λ idH)xn is a sequence in Ran(A− λ idH) converging to y.
Since (yn)n∈N is convergent, it is a Cauchy sequence, hence for n,m ∈ N we have the
following,

0← ∥yn − ym∥ = ∥(A− λ idH)xn − (A− λ idH)xm∥
= ∥(A− λ idH)(xn − xm)∥
≥ b2∥xn − xm∥, by lemma 4.29.

Thus (xn)n∈N is a Cauchy sequence and hence by completeness of H, limn→∞ xn := x
exists and is in H. By boundedness of A, and hence continuity A.15, we have that,

(A− λ idH)x = lim
n→∞

(A− λ idH)xn = lim
n→∞

yn = y.

It follows that A − λ idH is surjective. Moreover, a very similar application of the
inequality from 4.29 as used above shows it is also injective, hence bijective. By the
bounded inverse theorem A.23, it follows that (A− λidH)

−1 is bounded. ■

Theorem 4.31 (Functional Calculus). Let A ∈ B(H) be a self-adjoint operator on a
Hilbert space H. Then there exists a unique bounded linear mapping from C(σ(A),R)
into B(H), denoted by f 7→ f(A), such that when f(x) = xn, we have f(A) = An.
The map f 7→ f(A) is called the real-valued functional calculus on A.

Proof: Suppose A ∈ B(H) is self-adjoint and let p(x) =
∑n

i=0 aix
i be a real-valued

polynomial. We then have that

p(A)∗ =

(
n∑

i=0

aiA
i

)∗

=
n∑

i=0

ai(A
∗)i

=
n∑

i=0

aiA
i = p(A),

where we have used the properties of the adjoint as listed in section 3.1. This shows
that p(A) is self-adjoint, and thus from the previous remark and the spectral mapping
lemma 4.25 we have that
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∥p(A)∥ = r(p(A)) = sup
α∈σ(p(A))

|α|

= sup
α∈p(σ(A))

|α|

= sup
λ∈σ(A)

|p(λ)|.

This shows that the map p 7→ p(A) is an isometry between the collection of real-
valued polynomials on σ(A) with the supremum norm into B(H) with the usual
operator norm, hence it is bounded. Moreover, it is also easily seen to be linear, as
αp + q 7→ αp(A) + q(A), where q is another real-valued polynomial. By the Stone-
Weierstrass theorem [19], page 475, polynomials are dense in C(σ(A),R). By 2.52, it
follows we can extend the map p 7→ p(A) uniquely to a bounded linear operator from
C(σ(A),R) to B(H). That f(A) = An whenever f(x) = xn is precisely to say that
this map is an extension. ■

Definition 4.32. Let A ∈ B(H) be an operator. We say that A is non-negative, if
(Ax | x) ≥ 0 for all x ∈ H. We sometimes denote this by A ≥ 0.

Proposition 4.33. Let A be a self-adjoint operator on a Hilbert space H. Then for
all f, g ∈ C(σ(A),R) the functional calculus on A has the following properties.

(i) Multiplicative:

(fg)(A) = f(A)g(A), where fg denotes the pointwise product of f and g.

(ii) Self-Adjoint: f(A) is self-adjoint.

(iii) Non-negative: f(A) is non-negative if f is non-negative.

(iv) Norm and Spectrum: The norm can be evaluated by the following,

∥f(A)∥ = sup
λ∈σ(A)

|f(λ)|. (4.3)

σ(f(A)) = {f(λ) ∈ R | λ ∈ σ(A)}. (4.4)

Proof: Let A be given as in the proposition and suppose f, g ∈ C(σ(A),R).
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(i) Let (pn)n∈N and (qn)n∈N be sequences of real-valued polynomials converging
uniformly to f and g respectively, given by the Stone-Weierstrass theorem. We
then have for all n ∈ N, (pnqn)(A) = pn(A)qn(A). This therefore gives

(fg)(A) = lim
n→∞

(pnqn)(A) = lim
n→∞

pn(A)qn(A) = f(A)g(A).

(ii) As seen in the proof of theorem 4.31, if p is real valued then p(A) is self-adjoint.
Thus, if (pn)n∈N is a sequence of real-valued polynomials converging to f , we
have f(A) = limn→∞ pn(A) is the limit of self-adjoint operators, hence also
self-adjoint.

(iii) Suppose f is non-negative, meaning f(x) ≥ 0 for all x ∈ σ(A). Thus f(x) =
g(x)2 for some g ∈ C(σ(A),R) and for all x ∈ σ(A), where g =

√
f . Thus, g(A)

is self-adjoint by (ii), and for all x ∈ H we have that

(f(A)x | x) = (g(A)2x | x) = (g(A)x | g(A)x) ≥ 0,

showing that f(A) is a non-negative operator as claimed.

(iv) For 4.3, we have already established the result for real-valued polynomials in
4.25 and so the claim holds for continuous functions on σ(A) by taking appro-
priate limits.

For 4.4, first suppose λ ∈ R is not in the range of f , i.e. there is no x ∈ σ(A)
such that f(x) = λ. It follows therefore that the function g : σ(A) → R given
by g(x) = 1

f(x)−λ
is continuous, hence g ∈ C(σ(A),R). Moreover, we see that

g(A) is the inverse of f(A)− λI, from which it follows λ /∈ σ(f(A))).
For the reverse direction, suppose λ = f(x) for some x ∈ σ(A). Suppose f(x)
is not in σ(f(A)) and so f(A) − xI is bijective. Choose a sequence of real-
valued polynomials (pn)n∈N ∈ σ(A)N converging uniformly to f . By A.25, there
exists ε > 0 such that if B is an operator and ∥(f(A) − λI) − B∥ < ε, then
B is invertible. In particular, pn(A) − pn(x)I would have to be invertible for
sufficiently large n, which would contradict the spectral mapping lemma 4.25.

■
Our next result is an important tool in the proof of the spectral theorem. It is also
named after the Hungarian mathematician Frigyes Riesz, many of whose results are
important throughout functional analysis, as seen earlier with theorem 2.45 which
was proven in chapter 2. A proof of the following theorem is quite involved and can
be found in section 2.14 in [16].

55



Fergal Murphy

Theorem 4.34 (Riesz-Representation). Let X be a compact metric space and let
Γ : C(X,R) → R be linear with the property that Γ(f) is non-negative whenever
f(x) ≥ 0 for all x ∈ X. Then there is a unique measure µ on the Borel σ−algebra in
X for which

Γ(f) =

∫
X

f dµ, for all f ∈ C(X,R).

Example 4.35. Let A ∈ B(H) be self adjoint, and let x ∈ H. Define a map
φx : C(σ(A),R)→ R as follows,

φx(f) := (f(A)x | x).

Clearly φx is linear, as for any f, g ∈ C(σ(A),R) and any α ∈ C we have,

φx(f + αg) = ((f + αg)(A)x | x)
= ((f(A) + αg(A))(x) | x)
= (f(A)x+ αg(A)x | x)
= (f(A)x | x) + α(g(A)x | x) = φx(f) + αφx(g).

Now, suppose f ∈ C(σ(A),R) and suppose f(x) ≥ 0 for all x ∈ σ(A), i.e.f is non-
negative. By 4.33 (iii), it follows that f(A) is a non-negative operator, i.e f(A) ≥ 0.
Thus, φx(f) = (f(A)x | x) ≥ 0, and so φx satisfies the criteria of 4.34. It follows that
for each x ∈ H, there is a unique measure µx on the Borel σ−algebra in σ(A) such
that

(f(A)x | x) =
∫
σ(A)

f(λ)dµx(λ). (4.5)

Furthermore, defining 1 : σ(A)→ R, by 1(x) = 1 clearly gives 1(A) = idH and so we
get the following equality,

φx(1) = (1x | x) = (x | x)

=

∫
σ(A)

1(λ) dµx(λ)

=

∫
σ(A)

dµx

= µx(σ(A)).

(4.6)

Thus, we have that for each x ∈ H, ∥x∥2 = µx(σ(A)).
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Definition 4.36. Let f : σ(A)→ C be bounded and measurable. We let ζf : H → C
be the map given as follows,

ζf (x) =

∫
σ(A)

f(λ)dµx(λ),

where µx is the measure from example 4.35.

If f ∈ C(σ(A),R) then ζf (x) = (f(A)x | x) by 4.35. Thus, by A.41, ζf is a bounded
quadratic form on H. We want to extend this result to all bounded, measurable,
complex-valued functions. For this we will need the following lemma.

Lemma 4.37. Let X be a compact metric space and suppose

F ⊆ {f ∈ CX | f is bounded and Borel measurable }.

Furthermore, suppose F has the following properties.

(i) F is a complex vector space containing C(X,R).

(ii) For any f ∈ CX , if there is a uniformly bounded sequence (fn)n∈N ∈ FN such
that for all x ∈ X, limn→∞ fn(x) = f(x), then f ∈ F .

Then, F consists of all bounded, Borel-measurable functions on X.

Proof: We prove this in a number of stages. First, let L0 be the collection of all
Borel-measurable subsets E of X such that 1E is a uniformly bounded pointwise limit
of a sequence of continuous functions, where 1E denotes the characteristic function
on E.
We show this is an algebra on X. First, X is trivially open, hence in the Borel
σ−algebra on C. Since 1X(x) = 1 for all x ∈ X, the constant 1 sequence fn : X → C,
fn(x) = 1 satisfies the criteria.

Suppose A and B are both in L0, so they are both measurable and there are sequences
of uniformly bounded continuous functions from X to C, (an)n∈N and (bn)n∈N respec-
tively, such that for all x ∈ X,

lim
n→∞

an(x) = 1A(x), and lim
n→∞

bn(x) = 1B(x).

Define for each natural number n a function gn : X → C by gn(x) = max{an(x), bn(x)}.
Since an and bn are bounded for all n ∈ N, so too is gn. Note that we can rewrite gn
as follows,
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gn(x) = max{an(x), bn(x)} =
1

2
[an(x) + bn(x)] + |an(x)− bn(x)|,

and since an and bn are continuous, it follows gn is continuous also. Lastly, we
also have limn→∞ gn(x) = 1A∪B(x), showing A ∪ B ∈ L0. Next, define a function
hn : X → C, hn(x) = max{an(x)− bn(x), 0}. Then (hn)n→∞ is a uniformly bounded
sequence of continuous functions such that limn→∞ hn(x) = 1A\B(x) for all x ∈ X. It
follows A \B ∈ L0, hence L0 is an algebra as claimed.

We now show that L0 contains all the open sets in X. Suppose O ⊆ X is open.
For each n ∈ N, let Fn = {x ∈ O | d(x,X \ O) ≥ 2−n}. Each Fn is closed and
O =

⋃
n∈N Fn. Moreover, X \ O is closed and disjoint from each Fn. By Uhrysohn’s

lemma, for each n ∈ N there exists fn ∈ C(X,R) such that fn(x) = 1 for all x ∈ Fn,
and fn(x) = 0 for all x ∈ X \O. We also have that (fn)n∈N is uniformly bounded and
fn → 1O pointwise. Therefore L0 contains all the open subsets of X.

Next, let L1 be the collection of all measurable subsets E of X, such that 1E belongs
to F , that is,

L1 = {E ⊆ X | E is measurable and 1E ∈ F}.

We show that L1 is a monotone class. Let (An)n∈N ∈ L1
N and suppose it is increasing,

i.e. A1 ⊆ A2 ⊆ . . . . Then A :=
⋃∞

n=1 An is measurable since σ−algebras are closed
under countable unions. Moreover, 1A and 1B are the pointwise limits of the char-
acteristic functions of An and Bn respectively. Since pointwise limits of measurable
functions are measurable, it follows 1A, 1B ∈ L1.

Next, let E ∈ L0. Then E is measurable and 1E is a uniformly bounded limit of a se-
quence of continuous functions. Since F is closed under pointwise limits of uniformly
bounded sequences, it follows that 1E ∈ F and so E ∈ L1, i.e. L0 ⊆ L1. Thus, by the
monotone class lemma A.32, it follows that L1 contains the σ-algebra generated by
L0. Since L0 contains all the open sets in X, this in turn means that L1 contains all
the Borel sets in X.

Lastly, suppose f ∈ CX is bounded and measurable. Let O ⊆ C be a Borel set. Then
f−1(O) is a Borel set in X. Thus, f−1(O) ∈ L1 and so 1f−1(O) ∈ F . It follows that
f ∈ F , and so F consits of all bounded, Borel-measurable functions from X to C.

■

Theorem 4.38. If f : σ(A) → C is bounded and measurable, then ζf is a bounded
quadratic form.
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Proof: Let F be the collection of all bounded, measurable functions f : σ(A) → C
for which ζf is a quadratic form. Then it is easy to see that F is a vector space
containing C(σ(A),R) by 4.35. Suppose (fn)n∈N ∈ FN is a sequence of uniformly
bounded functions in F converging pointwise to a function f ∈ CX . Then f is
bounded and measurable also. Furthermore, since each fn is measurable and uni-
formly dominated by a constant, Lebesgue’s dominated convergence theorem A.34,
gives limn→∞

∫
σ(A)

fn(λ)dµx(λ) =
∫
σ(A)

f(λ)dµx(λ), and so ζf is a quadratic form. It

follows by 4.37 that F is the space of all bounded Borel-measurable functions.
Moreover, using 4.6 we get the following,

|Qf (x)| =
∣∣∣∣∫

σ(A)

f(λ)dµx(λ)

∣∣∣∣
≤ sup

λ∈σ(A)

|f(λ)|µx(σ(A))

= sup
λ∈σ(A)|

|f(λ)|∥x∥2.

Hence, ζf is a bounded quadratic form for every f ∈ F . ■

Corollary 4.38.1. Let f : σ(A) → C be bounded and measurable, where A ∈ B(H)
is a self-adjoint operator. Then there exists a unique operator f(A) ∈ B(H) such that
for all x ∈ H we have the following,

(f(A)x | x) = Qf (x) =

∫
σ(A)

f dµx.

Furthermore, if f(σ(A)) ⊆ R, then f(A) is self-adjoint.

Proof: Combine theorem 4.38 with A.42. ■

Proposition 4.39. Let f, g ∈ Cσ(A) be bounded and measurable functions. Then the
functional calculus on A has the following property,

(fg)(A) = f(A)g(A).

Proof: Let F1 denote the space of all bounded measurable functions f such that
(fg)(A) = f(A)g(A) for all g ∈ C(σ(A),R). It is clear that F1 is a vector space
containing C(σ(A),R). As noted in 4.38 Lebesgue’s dominated convergence theorem
ensures A.34 the map f 7→ ζf (x) for x ∈ H is continuous under uniformly bounded,
pointwise convergence. Let Lf be the associated sesquilinear form to ζf , and suppose
(fn)n∈N is a sequence of uniformly bounded functions that converge pointwise to f ,
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each with associated sesquilinear form Lfn . By the polarisation identity 2.6, we have
the following,

Lfn(x, y) =
1

2
[ζfn(x+ y)− ζfn(x)− ζfn(y)]−

i

2
[ζfn(x+ iy)− ζfn(x)− ζfn(iy)]

−→ 1

2
[ζf (x+ y)− ζf (x)− ζf (y)]−

i

2
[ζf (x+ iy)− ζf (x)− ζf (iy)]

= Lf (x, y)

Thus, the map f 7→ Lf (x, y) is also continuous under uniformly bounded pointwise
limits. By A.40, f ∈ F1 if and only if for every g ∈ C(σ(A),R) and every x ∈ H, we
have

((fg)(A)x | x) = (f(A)g(A)x | x)
which is equivalent to ζfg(x) = Lf (g(A)x, x). By the continuity of f 7→ Lf (x, y) and
f 7→ ζf (x) with respect to uniformly bounded pointwise limits, it follows that F1 is
also continuous in this sense. Thus, using the result of 4.37, it follows that F1 consists
of all bounded, Borel-measurable functions.

Next, let F2 be the space of all bounded, Borel-measurable functions f such that
(fg)(A) = f(A)g(A), for all bounded and Borel-measurable functions g ∈ Cσ(A).
The above argument shows that C(σ(A),R) ⊆ F1. Repeating the same argument
as above and using 4.37 once more, we conclude that F2 consists of all bounded,
Borel-measurable functions, proving the claim.

■
We are now ready to prove the main result of this thesis, the spectral theorem for
self-adjoint operators.

Theorem 4.40. Suppose A is a self-adjoint operator on a Hilbert space H. For all
Borel-measurable sets E ⊆ σ(A), define an operator µA(E) on H by

µA(E) := 1E(A),

where 1E(A) is the operator described by 4.38.1. Then µA is a projection-valued
measure on σ(A) and satisfies the following condition,∫

σ(A)

λ dµA(λ) = A.

Proof: For a measurable set E ⊆ σ(A), 1E is real-valued and clearly satisifes 1E ·1E =
1E. From the properties of the functional caclulus on A 4.33, we therefore have that
1E(A) is self-adjoint and 1E(A) = 1E(A)

2. Thus, µA(E) is an orthogonal projection
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for any measurable set E ⊆ σ(A).
Next, note that 1∅(x) = 0 for all x ∈ σ(A), and so µA(∅) = 1∅(A) = 0. We also clearly
have 1σ(A)(x) = 1 = x0 for all x ∈ σ(A), and so µA(σ(A)) = 1σ(A)(A) = A0 = idσ(A).
If E1 and E2 are both Borel sets, then 1E1∪E2(x) = 1E1(x) · 1E2(x) for all x ∈ σ(A),
hence µA(E1 ∪ E2) = µA(E1)µ

A(E2).
Suppose (En)n∈N is a sequence of disjoint Borel sets in σ(A). We must show that for
all x ∈ H, the following holds,

µA

(
∞⋃
n=1

En

)
x =

∞∑
n=1

µA(En)x.

First, note that if m ̸= n, then µA(En)µ
A(Em) = µA(∅) = 0. Since µA(En) and

µA(Em) are projections, it follows that Ran(µA(En))
⊥ = Ran(µA(Em)). Next let

F =
⋂{

S ⊆ H | S is a closed subspace of H and Ran(µA(En)) ⊆ S for all n ∈ N
}
.

F is a closed subspace of H and so let P be the projection onto F . It then follows
that for all x ∈ H,

Px = lim
n→∞

n∑
k=1

µA(Ek)x.

If E :=
⋃∞

n=1 En then the sequence of functions fn =
∑n

k=1 1Ek is uniformly bounded
by 1 and converges pointwise to 1E. Using Lebesgue’s dominated convergence theorem
A.34, we therefore, have that

lim
n→∞

∫
σ(A)

fndµx =

∫
σ(A)

1E dµx.

Using 4.38.1, for all x ∈ H we have

lim
n→∞

(
n∑

k=1

1Ek
(A)x | x

)
= (1E(A)x | x).

It follows that 1E(A)x = Px for all x ∈ H, i.e. µA (
⋃∞

n=1En) =
∑∞

n=1 µ
A(En). Thus,

µA is a projection-valued measure.
Next, suppose g ∈ Cσ(A) is a simple function, so g =

∑n
k=1 ak1Ek

for a disjoint
collection of Borel sets (Ek)

n
k=1. We then have the following set of equations.
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∫
σ(A)

g(λ) dµA(λ) =

∫
σ(A)

n∑
k=1

ak1Ek
dµA(λ)

=
n∑

k=1

ak

∫
σ(A)

1Ek
dµA(λ)

=
n∑

k=1

ak µ
A(Ek)

=
n∑

k=1

ak1Ek
(A) = g(A).

Now suppose f ∈ Cσ(A) is bounded and measurable. Then f is the uniform limit of
a sequence of simple functions (fn)n∈N, by theorem A.33. This, combined once more
with Lebesgue’s dominated convergence theorem A.34 therefore gives,

∫
σ(A)

f(λ)dµA(λ) =

∫
σ(A)

lim
n→∞

fn(λ) dµ
A(λ)

= lim
n→∞

∫
σ(A)

fn(λ) dµ
A(λ)

= lim
n→∞

fn(A) = f(A).

Since the inclusion map f(λ) = λ is trivially a bounded and measurable function on
σ(A), and f(A) = A, the previous set of computations gives∫

σ(A)

λ dµA(λ) = A.

■

Remark 4.41. The spectral measure µA in theorem 4.40 is unique. This is a con-
sequence of the measure-theoretic Riesz representation theorem 4.34 and equation
4.5.
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5 Conclusion

The spectral theorem from the final section is the beginning of a vast area of re-
search in mathematics known as operator theory which studies objects known as C∗

algebras. In particular, there are formulations of the spectral theorem proven entirely
within the context of C∗ algebras, see section 2.5 in [13]. If I had more time to explore
further topics this is undoubtedly the route I would have gone down. Besides this,
there is another formulation of the spectral theorem I would have enjoyed proving
involving a concept known as direct integrals, see theorem 7.19 in [9]. Other topics
of further study I would have considered include Fredholm theory and applications
to quantum mechanics.

The theory of Hilbert space operators is indispensable in many areas of mathematics.
Given that I will be beginning postgraduate studies this September in the area of
Harmonic Analysis, I am grateful that I was given the opportunity to do this project
and learn everything I learned.
Furthermore, I was lucky enough to have been able to study Functional Analysis as
well as Measure and Integration theory before starting with my project. Without
these modules, it would have been impossible to complete.

As a final note, I’d like to extend sincere gratitude to my project supervisor Prof.
Martin Mathieu whose guidance this year was invaluable.
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A Appendix

This appendix serves to provide key theorems and results that are of fundamental
importance throughout the theory of Hilbert space operators, but whose proofs and
development would make this thesis less focused and too expansive, and as a result,
we include them here.

A.1 Concepts in Set Theory and Topological Spaces.

The following section uses [12] and [18] as primary guiding sources.

Definition A.1. Let (X,≤) be a partially ordered set.

• A chain in X is a subset that is totally ordered.

• An upper bound for a subset Y ⊆ X is an element x ∈ X such that y ≤ x for
all y ∈ Y.

• X is inductively ordered if every chain in X has an upper bound.

• A maximal element for a subset Y ⊆ X is an element y ∈ Y such that if y ≤ x
for some x ∈ Y , then x = y.

Axiom A.2 (Zorn’s Lemma). Every non-empty inductively ordered set contains a
maximal element.

Definition A.3. Let X be a topological space. We say that X is compact if each of
its open covers has a finite subcover. That is, X is compact if for every collection C
of open subsets of X such that

X =
⋃
A∈C

A,

there exists a finite subset F ⊆ C such that

X =
⋃
A∈F

A.

Definition A.4. Let (X, d) be a metric space. We say that a subset A is precompact
if A is compact.

Definition A.5. A metric space (X, d) is complete if every Cauchy sequence in X
converges to a point in X.

Definition A.6. We say a subset Y of a metric space (X, d) is dense in X, if the
closure of Y is X, that is, Y = X.
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Definition A.7. Let (X, d) be a metric space. We say that X is separable, if it has
a subset Y ⊆ X such that Y is dense in X.

Definition A.8. Let Y be a subset of the metric space (X, d). We say that

(i) Y is rare (nowhere dense) if Y has empty interior.

(ii) Y is meagre (of first category) if Y =
⋃

n∈N Yn for a countable family of rare
subsets Yn.

(iii) Y is non-meagre(of second category) if Y is not meagre.

Theorem A.9. Let (X, d) be a metric space. If Y ⊆ X is a meagre subset of X,
then Y c is dense.

Theorem A.10 (Baire Category Theorem). Every complete metric space is of second
category.

Definition A.11. Let (X, τ) be a topological space. We say X is normal if given
any disjoint, closed sets E and F , there are neighbourhoods U of E and V of F
respectively, such that U and V are disjoint.

Theorem A.12 (Urysohn’s Lemma). Let (X, τ) be a topological space. Then X is
normal if and only if for any two non-empty, closed, disjoint subsets E and F of X,
there exists a continuous map f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.

A.2 Concepts in Functional Analysis

In this section the main theorems and concepts from functional analysis are provided.
See [1], [11] and [5] for proofs and general theory.

Definition A.13. Let E be a complex vector space. A function ∥·∥ : E → [0,∞) ⊆ R
that satisfies the following three axioms for all x, y ∈ E and α ∈ C is called a norm
on E.

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥αx∥ = |α|∥x∥.

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

In this case we say E is a normed vector space or simply a normed space for short.

Given a normed space (E, ∥ · ∥), the relation d(x, y) := ∥x − y∥ defines a metric d
on E. If every cauchy sequence in a normed space E converges to a point in E with
respect to the induced metric d, then we say that E is a Banach space.
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Definition A.14. Let E and F be Banach spaces. We say that a linear map T :
E → F is bounded if there exists M > 0 such that ∥Tx∥ ≤M∥x∥ for all x ∈ E.

We denote the set of all bounded linear maps from the Banach space E into the
Banach space F by B(E,F ). Under the usual operations of addition and scalar
multiplication by elements in C, B(E,F ) is a vector space. In addition, we can equip
it with the following norm. Let T ∈ B(E,F ), and let E1 denote the unit ball of E,
that is, E1 = {x ∈ E | ∥x∥ ≤ 1}. We then define ∥T∥ as the following,

∥T∥ := sup{∥T (x)∥ : x ∈ E1}.

It can be shown that this norm is equivalent to the following quantity,

∥T∥ = inf{M ∈ R+ | ∥Tx∥ ≤M∥x∥, for all x ∈ E}.

Theorem A.15. Suppose T : E → F is a linear mapping from the Banach space E
into the Banach space F . Then T is bounded if and only if it is continuous.

Proof: If T is the zero operator then it is obviously continuous, so suppose T is not
the zero operator, is bounded, and let ε > 0. Choose δ = ε

∥T∥ . Then for x, y ∈ E, we
have

∥x− y∥ < δ =⇒ ∥T∥∥x− y∥ < ε.

Since ∥Tx−Ty∥ = ∥T (x−y)∥ ≤ ∥T∥∥x−y∥ < ε, it follows that T is in fact uniformly
continuous, hence continuous.
In the reverse direction, suppose T is continuous. In particular, T is continuous at
0 ∈ E and hence there exists δ > 0 such that for all x ∈ Eδ, Tx ∈ F1. Without loss
of generality, suppose that x ̸= 0. We then have the following,

∥Tx∥ =
∥∥∥∥∥x∥δ T

(
δ

∥x∥
x

)∥∥∥∥ =
∥x∥
δ

∥∥∥∥T ( δ

∥x∥
x

)∥∥∥∥ ≤ ∥x∥δ · 1 =
1

δ
∥x∥.

Thus for all x ∈ E we have ∥Tx∥ ≤ 1
δ
∥x∥ and so T is bounded. ■

Theorem A.16. Let T : Cn → Cn be linear map, where Cn is equipped with the
standard inner product. Then T is bounded.

Theorem A.17. Let E be a finite-dimensional normed space. Then E is complete.

Definition A.18. Let E be a Banach space over a field K. The dual space of E,
denoted by E ′, is the set of all continuous linear operators from E into K, i.e,

E ′ := {f ∈ KE | f is continuous and linear }. (A.1)

The elements of E ′ are called bounded linear functionals.
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Definition A.19. A linear map T : E → F between normed spaces E and F is
called an isometry if ∥Tx∥ = ∥x∥ for all x ∈ E.

Theorem A.20 (Hahn–Banach). Let E0 be a subspace of normed space E. For every
f0 ∈ E ′

0 there exists f ∈ E ′ such that f |E0 = f0 and ∥f∥ = ∥f0∥, where f |E0 denotes
the restriction of f to E0.

Theorem A.21. Suppose X is a normed space. Then X is a Banach space if and
only if every absolutely convergent series converges.

Theorem A.22 (Uniform Boundedness Principle). Let E be a Banach space and let
F be a normed space. Let T ⊆ L (E,F ) and suppose sup{∥Tx∥ | T ∈ T } < ∞ for
all x ∈ E. Then sup{∥T∥ | T ∈ T } <∞.

Theorem A.23 (Bounded Inverse Theorem). Let X and Y be Banach spaces, and
suppose T : X → Y is bounded and linear. If T is bijective, then T−1 : Y → X is
also bounded.

Theorem A.24. Suppose T : X → Y is a bounded linear operator, where X and Y
are Banach spaces. Then T is not invertible if it is not bounded from below.

Theorem A.25. Let A ∈ B(H) be a bounded linear operator on a Hilbert space H.
If A is invertible, then there exists ε > 0 such that if B is a bounded linear operator
and ∥A−B∥ < ε, then B is invertible.

Theorem A.26 (Banach–Alaoglu ). Let E be a normed space. Then the closed unit
ball of E ′ is compact with respect to the weak-∗ topology.

Theorem A.27. Let X be a separable normed space. Then every bounded sequence
in X ′ has a subsequence that converges in X ′ with respect to the weak−∗ topology.

Proof: See [15], chapter 8, section 3.1. Alternatively, see [3] chapter 8. . ■

Definition A.28. Let E be a Banach space over C. The bidual of E, denoted E ′′ is
the set of all bounded linear maps from E ′ to C, that is

E ′′ = {f ∈ CE′ | f is bounded and linear }. (A.2)

For every normed space E there exists a canonical embedding J : E → E ′′ given by
J(x)(f) := f(x), where f ∈ E ′ and x ∈ E. Using the Hahn–Banach theorem A.20, it
can be shown that this map is a linear isometry. It is, however, not always surjective.
Spaces for which this is the case are given a special name.

Definition A.29. Let E be a normed space and let J : E → E ′′ be the canonical
embedding of E into its bidual. We say that E is reflexive if J is surjective.
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It is not always the case however, that if a normed space is isometrically isomorphic
to its bidual, that it is reflexive. The prototypical example of such a space was given
by R.C James, and is aptly named the James space. A detailed descriton can be
found in [5], chapter 2, section 4.

Let E be a normed space and let J : E → E ′′ be the canonical embedding of E
into its bidual. We call the initial topology on E with respect to all functionals f ∈ E ′

the weak topology on E, i.e, it is the weakest topology on E making all f : E → C
continuous. The weak topology is denoted by σ (E,E ′) .
In a similar vein, the initial topology on E ′ with respect to all functionals Jx : E ′ → C
is called the weak-∗ topology on E ′. It is the weakest topology on E ′ ensuring that
every Jx : E ′ → C is continuous, as x ranges through E. The weak-∗ topology is
denoted by σ(E∗, E).

Theorem A.30 (Continuity of the inner product). Let (E, (· | ·)) be an inner product
space, and let (xn)n∈N be a sequence in E converging to a point x ∈ E. Then for all
y ∈ E, limn→∞(xn | y) = (x | y).

Proof: For a fixed y ∈ E, define a map fy : E → C by fy(x) = (x | y). Cleary fy is
linear and by the Cauchy–Schwarz inequality 2.8, we have that |fy(x)| ≤ ∥y∥∥x∥
and so fy is bounded. By theorem A.15 it follows that fy is continuous, hence
limn→∞ fy(xn) = limn→∞(xn | y) = (x | y) = fy(x).

■

A.3 Results from Measure Theory

Measure theoretic concepts are used in the formulation and proof of the spectral
theorem for self-adjoint operators, and as such, here we state a few key concepts
used throughout section 4.3. More in-depth formulations included with proofs can be
found in [2]. In particular, a proof of the monotone class lemma A.32 is included in
section 5.A, and a proof of A.33 can be found in section 2.E

Definition A.31. Let X be a set and let M be a collection of subsets of X, and
suppose (An)n∈N and (Bn)n∈N are sequences of sets within M such that (An)n∈N is
increasing and (Bn)n∈N is decreasing. Then M is a monotone class on X, if

∞⋃
n=1

An ∈M and
∞⋂
n=1

Bn ∈M.

Lemma A.32 (Monotone Class Lemma). Suppose M is a monotone class on a set
X, and suppose A is an algebra contained in M . Then M contains the σ−algebra
generated by A.
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Theorem A.33 (Approximation by Simple Functions). Suppose (X,Σ) is a measur-
able space and f : X → [−∞,∞] is Σ−measurable. Then there exists a sequence of

functions (fn)n∈N ∈
(
RX
)N

such that

(i) Each fn is a simple Σ−measurable function.

(ii) For each n ∈ N and x ∈ X, we have |fk(x)| ≤ |fk+1(x)| ≤ |f(x)|.

(iii) For each x ∈ X : limn→∞ fn(x) = f(x)

(iv) If f is bounded, the sequence (fn)n→∞ converges to f uniformly.

The following core result in measure theory gives conditions under which we may
swap an integral with limits. A proof can be found in section 3.B of [2].

Theorem A.34 (Lebesgue’s Dominated Convergence Theorem). Suppose (X,Σ, µ)
is a measure space and f : X → [−∞,∞] is Σ−measurable. Suppose furthermore
that (fn)n∈N is a sequence of Σ−measurable functions from X to [−∞,∞] such that

lim
n→∞

fn(x) = f(x)

for almost every x ∈ X. If there exists a Σ−measurable function g : X → [−∞,∞]
such that ∫

g dµ <∞ and |fn(x)| ≤ g(x)

for almost every x ∈ X and every n ∈ N, we then have that

lim
n→∞

∫
fn dµ =

∫
f dµ.

A.4 Quadratic and Sesquilinear Forms.

The basic theory of quadratic and sesquilinear forms is found throughout functional
analysis, and as such we require it to develop the theory of operators on Hilbert space.
A guiding source for the material here can be found in section A.4.4 in [9].

Definition A.35. Let H be a complex Hilbert space. A map ϕ : H × H → C is
called a sesquilinear form on H if it is linear with respect to the first argument and
antilinear with respect to the second, that is, for all x, y, z ∈ H and α, β ∈ C we have

(i) Linear in the first argument:

ϕ(αx+ βy, z) = αϕ(x, z) + βϕ(y, z).
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(ii) Antilinear in the second argument:

ϕ(x, αy + βz) = αϕ(x, y) + βϕ(x, z).

It is easily recognised that the familiar inner product is a sesquilinear form.

Definition A.36. A sesquilinear form ϕ on a Hilbert space H is bounded if there
exists M > 0 such that for all x, y ∈ H, we have

|ϕ(x, y)| ≤M∥x∥∥y∥.

Proposition A.37 (Polarisation Identity). If ϕ is a sesquilinear form on a Hilbert
space H, then for all x, y ∈ H we have the following,

ϕ(x, y) =
1

2
[ϕ(x+ y, x+ y)− ϕ(x, x)− ϕ(y, y)]

− i

2
[ϕ(x+ iy, x+ iy)− ϕ(x, x)− ϕ(iy, iy)] .

Definition A.38. Let H be a complex Hilbert space. A functional Q : H → C is a
quadratic form on H if it satisfies two conditions, namely, for all x ∈ H and α ∈ C,
Q(αx) = |α|2Q(x), and the following map L : H ×H → C given by

L(x, y) =
1

2
[Q(x+ y)−Q(x)−Q(y)]

− i

2
[Q(x+ iy)−Q(x)−Q(iy)]

is a sesquilinear form. Furthermore, we say Q is bounded if there is M > 0 such that
for all x ∈ H,

|Q(x)| ≤ C∥x∥2.

Proposition A.39. Let Q be a quadratic form on a Hilbert space H with associated
sesquilinear form L. We then have the following.

(i) For all x ∈ H, Q(x) = L(x, x).

(ii) If Q is bounded then L is bounded.

(iii) If Q(x) ∈ R for all x ∈ H, then L is conjugate symmetric, i.e.

L(x, y) = L(y, x), for all x ∈ H.
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Theorem A.40. Suppose L1 and L2 are sesquilinear forms on a Hilbert space H.
If L1(x, x) = L2(x, x) for all x ∈ H, then L1(x, y) = L2(x, y) for all x, y ∈ H.
Consequently, if A and B are operators on H such that (Ax | x) = (Bx | x) for all
x ∈ H, then A = B.

Example A.41. Let A ∈ B(H) be an operator on a Hilbert space H. Then the map
QA : H → C given by

QA(x) = (Ax | x)

is a bounded quadratic form with associated sesquilinear form LA given by

LA(x, y) = (Ax | y).

Theorem A.42. If Q is a bounded quadratic form on a Hilbert space H, then there is
a unique operator A ∈ B(H) such that Q(x) = (Ax | x) for all x ∈ H. Furthermore,
if Q(x) ∈ R for all x ∈ H, then A is self-adjoint.
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